
Algorithm for Implementing an ABCD Ray Matrix  
Wave-Optics Propagator 

 
Justin D. Mansell*, Robert Praus, Liyang Xu, Anthony Seward, and Steve Coy 
MZA Associates Corporation, 2021 Girard Ste 150, Albuquerque, NM  87106 

 
ABSTRACT 

 
In prior work we described a 5x5 ray matrix formalism and how to integrate the effects that are not modeled in wave-
optics with the ray matrix model.  In this paper we describe how to complete the integration of the two techniques by 
modifying the Siegman ABCD ray matrix decomposition.  After removing the separable effects like image rotation and 
image inversion, we break the 5x5 ray matrix into two 2x2 sections (a.k.a. the ABCD matrices) that correspond to the 
two axes orthogonal to the propagation.  We then present a general algorithm that breaks any arbitrary ABCD matrix 
into four simple wave-optics steps.  The algorithm presented has sufficient generality to handle image planes and focal 
planes.  This technique allows for rapid and accurate wave-optics modeling of the propagation of light through complex 
optical systems comprised of simple optics.   
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1. INTRODUCTION 
Wave-optics and ray matrices are two techniques that have been used for many years to model complex optical systems.  
The ray matrix technique is a fast way to gain an understanding of how a ray of light propagates through a series of 
optics.1  In the traditional 2x2 (a.k.a. ABCD) form, they can be used to determine whether a system is imaging, if it adds 
curvature to a beam, or whether it adds magnification.  If more detailed system performance is required, wave-optics 
techniques are typically employed.  Wave-optics allows for modeling of higher-order effects on the wavefront and 
diffraction in a way that is not possible in ray matrices, but at a significant computational cost.  Wave-optics modeling 
of complex systems of simple optics is therefore very time consuming.  This paper presents a method of reusing simple 
ray matrix results to predict the performance of complex optical systems using.   

2. BACKGROUND 

2.1. Wave Optics Modeling 
Wave-optics (a.k.a. Fourier optics) models simulate the propagation of light using the Fresnel approximation of the 
Huygens-Fresnel principle.2  Light propagated between two planes can be modeled using a two-dimensional Fourier 
transform of a grid of samples of the complex electric field.   Although this technique is much more computationally 
intensive, it allows much more detail about the beam to be modeled including the effects of higher-order aberrations and 
the resulting system transfer functions like the modulation transfer function (MTF) or the optical transfer function 
(OTF).   
 
Using the Huygens-Fresnel principle, the field amplitude, U, at a point in the output plane (x2,y2) is the superposition 
integral of points in the input plane, (x1,y1), inside some limiting aperture Σ and the Green’s function of free space 
(a.k.a. the propagation kernel), h(x1,y1;x2,y2), which is written as, 
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and z is the axial distance between the input and output planes, λ is the wavelength of light being modeled, and k is the 
wave number (2π/λ).  Using the Fresnel approximation, the kernel reduces to  
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Using this form of the kernel, the propagation is a convolution of the input field with the kernel, and is referred to as the 
convolution propagator.   
 
Further simplification allows the kernel to be decomposed into three separate terms which are two quadratic (or 
parabolic) phase terms in the input and output planes and a term that is directly analogous to the 2D Fourier transform 
operator.  This form, referred to as the one-step propagator, is written as 
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where the F(…) operator is the 2D Fourier transform operation and the Q(z) is the quadratic phase factor with a radius 
of curvature of z, which can be written as 
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where the subscript, x, represents the plane of the operation. 

2.2. Numerical Modeling of the Convolution Propagator 
The most basic wave-optics modeling can be done with a one-step Fourier propagator.  Implementation of this form of 
propagator involves multiplying the field by the quadratic phase factor, Fourier transforming the field, and then 
multiplying by an additional quadratic phase factor and a scaling term.  This is the fastest way of modeling optical 
propagation, but it has some practical disadvantages when implementing complex wave-optics models.  In 
computational wave-optics modeling, the field is represented by samples of the complex field on a discrete 2D mesh.  
The spacing between mesh points needs to be chosen carefully to ensure that the quadratic phase factors and the field 
are properly represented.3  For quadratic phase factors, the mesh spacing must be sufficient to represent the slope of the 
quadratic phase factor at the edge of the region of interest.  If the region of interest has a diameter D1, the minimal mesh 
spacing is 
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where δ1 is the mesh spacing in the input field and R is the radius of curvature of the quadratic phase factor being 
applied in the input plane.  In a one-step propagator, the output spacing between mesh points, δ2 is λz / δ1.  The same 
sampling constraints need to be maintained for the quadratic phase factor in the output plane as well.  (For more 
information on mesh spacing requirements, see reference 3).   
 
Because of the lack of control over the final plane mesh spacing in the one-step Fourier propagator, a convolution 
propagator is often used for wave-optics simulations.  The convolution propagator is typically implemented on a 
computer by Fourier transforming the input field, multiplying by a convolution kernel, and inverse Fourier transforming 



the field.  Implementation of this type of propagator is very convenient because unlike the one-step Fourier propagator, 
the input and output results are represented with the same grid spacing.   
 
Using a convolution propagator allows for mesh spacing to be maintained, but if the light is converging or diverging the 
mesh needs to be adjusted to match the beam size in order to maintain 
the resolution.  As an example, imagine light being modeled 
propagating through a lens and to the focus.  In most cases, if the grid 
size were maintained, only a few mesh points would have any light.  
Control over the final propagation mesh size is achieved by 
propagating relative to a spherical reference wave.  In spherical wave 
propagation (SWP), the effective propagation distance and mesh size 
change relative to the radius of curvature of the reference .  Physically, 
SWP is analogous to a nominally collimated beam propagating through 
a lens to a distance z as is shown in Figure 1.  The effective 
propagation distance in collimated space can be calculated by the 
imaging equation4 
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where f is the focal length of the lens, z is the propagation distance, and zeff is the effective propagation distance.  
Solving for zeff gives, 
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The only difference between the complex field at a plane a distance z in front of the lens with focal length f and field at 
the image plane zeff from the lens is an effective magnification, Meff, which can be calculated by  
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After the propagation of distance Leff and magnification of the field by Meff, the output reference radius of curvature 
needs to be reduced by the propagation distance Leff, or Rref’ = Rref – Leff. 
 
As an example of a case where SWP is typically used, consider a nominally collimated beam that we want to model 
being transmitted through a lens with focal length f and propagating a distance L.  Further assume that the regions of 
interest (ROI) in the input and output planes are of diameter D1 and D2 respectively.  The magnification for this 
propagation is given by the ratio of the ROI diameters, so the required reference radius of curvature, Rref, is given by  
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The reference radius of curvature does not necessarily need to be equal to the lens focal length f.  In fact, in most cases 
the output diameter, D2, will be larger than that predicted by simple ray tracing to account for diffractive spreading. 
(There is more on this topic later in this paper).  The difference between the desired applied curvature, f, and the 
curvature in the reference needs to be applied directly to the mesh.  The radius of curvature applied to the mesh is given 
by 

111 −−− −= refmesh RfR . 
 
In summary, the SWP technique propagates a beam relative to a large curvature by finding an effective propagation 
length and magnifying the beam to compensate for the relative curvature.   

2.3. Ray Matrix Modeling 

zzeff

Rref

 
Figure 1 - Effective optical diagram 
for spherical wave propagation 



Ray matrices are a common technique for modeling simple optical systems.  Using the traditional ray matrix technique, 
a ray of light is represented by its distance from the optical axis and its angle relative to the optical axis.  This technique 
is limited to modeling a set of ideal lenses with no higher order distortion and no apertures that significantly affect the 
beam.   
 
The simplest ray matrix formalism uses a 2x2 matrix, often referred to as an ABCD matrix, to represent each optical 
operation on a ray of light.  This formalism is sufficient for modeling the behavior of simple optical systems, but lacks 
the ability to handle effects like multi-dimensionality, image inversion, image rotation, image translation, and tilt 
addition. 
 
There are formalisms that exist which expand the simple 2x2 matrices to handle some of these effects.  Gerrard and 
Burch present a 3x3 matrix formalism that has been expanded to handle image translation and tilt addition.5  A 4x4 
matrix formalism is presented by Siegman that allows orthogonal axes to be modeled so that things like simple 
astigmatism and image rotation can be modeled.1  In prior work, we presented an integration of these two formalisms 
into a single 5x5 ray matrix formalism that enables modeling of effects like tilt addition, image translation, and image 
rotation.6  We also developed a technique for decomposing a given system described by a 5x5 ray matrix into a set of 
six effects beyond the simple wave-optics model.  These effects were tilt, offset, focal power, magnification, image 
inversion, and image rotation.  At the end of this work we referred to the possibility of removing tilt, offset, image 
inversion, and image rotation and being left with a simple 2x2 ray matrix (an ABCD matrix), which could be 
implemented with the Huygen’s Propagation integral.  There are numerous possible numerical methods for 
implementing this type of integral, but we present here an efficient algorithm that leverages fast Fourier transform 
(FFT) numerical techniques. 

2.4. Combining the ABCD and Huygens Propagation Integral 
Several authors have described techniques for integrating the Huygens propagation integral with ABCD matrices.  
Siegman and Herzig both describe the Huygens propagation integral in terms of the 2x2 element ray matrix (a.k.a the 
ABCD matrix) results of an optical system as long as no non-linear elements, like deformable mirrors or apertures are 
introduced as7,8 
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where U2 is the output electric field, U1 is the input electric field, L is the on-axis optical path length through the system 
computed as the sum of each path length times its refractive index, A, B, C, and D are the four elements of the 2x2 ray 
matrix, λ is the wavelength, and k is the wave number (2π / λ).  This formalism is presented here to handle only one 
ABCD matrix, but can be extended to two to handle differing effects in the two axes.8  Siegman goes on in his book to 
decompose a general ABCD matrix into five consecutive operations: focus, magnification, propagation, magnification, 
and focus, or 
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where f1 and f2 are the focal lengths, M1 and M2 are the magnifications, and L is the propagation distance.  Siegman 
goes on to give some limited guidance on the choice of M1 and M2, but does not provide the user specific information 
on how to choose these parameters.   
 
Ozaktas describes a technique for implementing wave propagation through a system with an ABCD matrix that 
leverages fractional Fourier transforms.9  Ozaktas’s algorithm uses scaling parameters for the input and output spaces 
that are not well defined.  Furthermore, the Ozaktas algorithm requires that the user create a fractional Fourier transform 
routine for propagation which does not fit well into our traditional wave-optics formalism.   
 
Each of these two approaches presents implementation challenges, but we chose to pursue further investigation of the 
Siegman algorithm because it offered the most overlap with the existing wave-optics infrastructure in our WaveTrain 
software.   



3. REFINING SIEGMAN’S ABCD DECOMPOSITION ALGORITHM 
Siegman’s algorithm for decomposing an ABCD matrix produces the following relationships 
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where M is the product of M1 and M2 and the unused element C is determined based on the constraint of the ABCD 
matrices that the determinant (AD-BC) is equal to 1.  The algorithm description also indicates that the Fresnel number, 
and hence the computational difficulty, is independent of the distribution of the magnifications M1 and M2, but gives 
very little guidance on appropriate choices of magnification.  Therefore, in implementing the Siegman algorithm, we 
first investigated the choice of the magnifications M1 and M2.   

3.1. Choosing Magnification 
Since the distributions of M1 and M2 did not affect computational complexity, we chose to make M1=1.0 and have the 
system magnification, M, set to M2.  This reduces the number of degrees of freedom of the problem, but also the 
number of steps required in the modeling.   
 
There are several logical choices for the magnification.  First, in the case where the user wants to maintain the wave-
optics mesh spacing, the system magnification, M, can be set to 1.0.  We have found that this case is quite effective 
except when the system being described has an effective negative magnification.  This effect can come from going 
through a focus or image rotation.  In the case of negative system magnification, it is better to choose a magnification of 
-1.0.   
 
The next logical choice of magnification is to match the system magnification.  This is the A term of the ABCD matrix 
in the case of an imaging optical system, but can be a different value if the system is more complicated.  Usually the 
user knows the system’s magnification and can input that value directly.  Making the magnification equal to the A term 
of the ABCD is only especially problematic when A is zero, like it is at a focus.  In this case, the user must consider 
diffraction.  To add diffraction, we defined the diameter of the output region of interest (ROI) as  
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where D1 is the input beam diameter that is specified by the user, A is the term of the 2x2 ray matrix in the first row and 
first column, z is the propagation distance, λ is the optical wavelength, and η is a scale factor related to the amount of 
energy that the user wants to capture.  To determine the energy captured by different values of η, the energy with 
respect to radius was determined for the far-field diffraction patterns of a circular aperture (an Airy pattern), a square 
aperture (sinc), and a Gaussian (I=exp[-2 (r/w)2]) without a hard edge aperture but with w = D/3.  Figure 2 shows the 
energy captured by varying values of η for these common far-field patterns.  Based on this, we determined that a 
diffraction scale factor of 5 or a total coefficient of 10 (with the factor of 2) would be sufficient.   
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Figure 2 - Energy capture comparison of diffraction scaling factors 



 
Based on the formula for the output diameter that included diffraction and the relationships defined by Siegman, we 
found that the magnification for a given system should be given by  
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where A and B are elements of the 2x2 ray matrix and D1 is the user-specified diameter of the region of interest.  We 
use the sign of the ray magnification term (A) to determine which solution to use.  If the A term was negative, the 
difference between the two terms is used.  If it is positive, the sum is used. 
 
After running several cases, we found that the best choice for the system magnification in most cases is to set it equal to 
the expected magnification of the optical system.  When doing wave-optics, it is important to maintain the sign of the 
magnification so that image inversion in the wave-optics field can be implemented correctly.  In cases where light is 
being propagated to a focus, the diffraction must be considered when choosing the magnification.  Although this logic 
could be implemented as a function, we chose to leave the choice of magnification to the user.   

3.2. ABCD Matrix Decomposition Enabling Spherical Reference Wave Propagation 
The advantage of propagation relative to a reference curvature is that the curvature does not have to be applied to the 
mesh, so the mesh spacing does not have to decrease to avoid a Nyquist sampling violation in the phase of the wave-
optics field.  One way of understanding the parameters of the ABCD matrix propagation is to compare them with 
spherical reference wave propagation.  Consider a system composed of a lens of focal length f followed by a 
propagation of a distance d.  The resulting ABCD matrix for this system is given by, 
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If we apply the Siegman decomposition with the magnification M equal to 1.0, the system decomposes into f1=f, Leq=d, 
and f2=∞, which is exactly the steps used to create the ABCD matrix.   
 
If we set the magnification equal to the ray diameter at a distance d, the magnification becomes 1-d/f, which is exactly 
equal to the A term.  This clearly does not work when d=f since the magnification becomes zero, but we will neglect 
this degenerate case since we addressed it earlier.  With M=1-d/f=A, the system decomposes into f1=∞, Leq=fd/(f-d), 
and f2=f-d, which is mathematically identical to the decomposition derived using spherical reference wave propagation 
presented earlier.  Further study can show that the Siegman decomposition is mathematically identical to spherical 
reference wave propagation and can be used to bridge the gap between ray matrix methods and wave-optics.   

3.3. ABCD Propagation Implementation 
The ray-matrix propagator was implemented in WaveTrain using the system shown in Figure 3.  The details of the 
optical setup are entered as a vector into a component called SRMCompose, which creates a ray matrix (SRM is an 
acronym for System Ray Matrix).  The ray matrix is then decomposed into steps and information for each of these steps 
is distributed to individual components that operate on the wave.  The first step is to apply tilt to the wave.  Then the 
wave is translated as necessary.  The next steps implement the Siegman-type ABCD propagator described above.  First 
a focus is applied separately in the two axes.  Then a component called ResetCWPReference adds the reference 
curvature calculated in the ray matrix decomposition to the wave’s reference curvature, which is held in a register 
separate from the wave-optics mesh.  Then the wave is propagated a distance relative to its reference curvature and 
magnified.  The propagation implemented here is done relative to separate cylindrical curvatures in the two axes.  The 
magnification is a user-specified parameter for this system that is separate in the two axes.  Magnifying a wave-optics 
field involves changing the mesh spacing, reducing the field amplitude by √M, reducing the tilt on the field by M, and 
reducing the reference curvature register by M2.  Finally the additional curvature indicated by f2 is added separately in 
the two axes.  In this implementation of the component, we do not handle image rotation, but that can be implemented 
with an interpolation step. 



 
Figure 3 - WaveTrain implementation of the ABCD propagator 

3.4. No Effective Propagation Exception 
The only significant exception that we found to the procedure outlined by Siegman was the case of a simple lens.  A 
simple lens has an ABCD ray matrix of 
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where f is the focal length of the lens.  Using the Siegman decomposition, Leff, f1, and f2 are zero.  This degenerate case 
is also true when the system has magnification, which results in an ABCD matrix given by 
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This case is particularly unusual because there is no propagation involved, but needs to be handled in order to properly 
model imaging systems.  To handle these exceptions, we checked for the case where B=0 but C is not 0 or A is not 1.  If 
A was not 1, we forced the output magnification to be A.  In the case where C was non-zero, we set f2 to -A/C and f1 to 
zero.  Another equivalent way of handling the curvature is to set f1 to -1/CA and f2 to zero. 

4. EXAMPLE 4-F IMAGING SYSTEM 
As an example, we modeled the 4-f imaging system with a hard-edge input aperture shown in Figure 4.  The beam 
diameter, D, was 1 m.  The wavelength, λ, was 1.0 µm.  The lens focal length was 60 km.  The beam was propagated 
from the aperture to the lens, and to planes 30 km apart afterward the lens to the image plane.  The modeling was done 
both with traditional sequential convolution non-spherical wave propagation and with ABCD matrices to the desired 
plane and then propagated using the ABCD propagation algorithm described above.   
 



Table 1 shows the ray matrices for each of the planes in symbolic form.   
 

Figure 5 shows amplitudes of the fields in 1D from the sequential traditional wave-optics simulation and the ABCD 
propagation to the same plane.  Figure 6 shows the unwrapped phase profiles for each of the modeled planes.  To ensure 
proper sampling, 8192 mesh points were used in this simulation with a mesh spacing of 1.875 mm.   
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Figure 4 - Example 4-f Imaging System 

Table 1 – 2x2 Ray Matrices for the Example 4f Imaging System 
 

Position ABCD Ray Matrix 
2f before lens 
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Most of the amplitude and phase patterns generated by the sequential propagator and ABCD propagator overlie exactly, 
but there are two planes with some noticeable differences.  The phase in the focal plane of the imaging lens has 2π 
phase discontinuities.  This is due to a numerical ambiguity in representing the sinc lobes of the far-field field pattern.  
There is no effective difference between the -π and +π, so the computer has the option of choosing either and does so 
differently for the two models.  The other observable difference is in the amplitude of the image plane.  There is some 
enhanced ringing at the edges of the image of the aperture due to numerical precision of the simulation.   
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Figure 5 - Field amplitudes for the modeled planes of the 4-f imaging system 



 

5. CONCLUSIONS 
We present here an algorithm for propagating a beam through a complex system of simple optics using the system’s ray 
matrix or ABCD description.  This algorithm is simpler than the algorithm presented by Siegman and addresses some of 
degenerate cases and exceptions that the Siegman algorithm does not.  Our algorithm is directly and obviously 
compatible with existing wave-optics codes. 
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Figure 6 - Unwrapped 1D phase profiles (in radians) of the target planes of the 4-f imaging system 


