Beam Shaping for Relay Mirrors

Justin Mansell, Ph.D. MZA Associates Corporation and Active Optical Systems, LLC

Outline

- Introduction
 - Atmospheric Propagation Modeling
- Beam Shaping Modeling
 - Vacuum and through the Atmosphere
 - Effect on Beam Quality & Solution
- Implementation with AO
- Conclusions

Relay Mirror Application

Typical Relay Mirror Optical System

Model Setup

- Telescope Diameter = 1.5 m
- Central Obscuration Diameter = 0.3 m
- Wavelength (λ) = 1315 nm
- Distance Range = 50km to 400km
 - Fresnel Number $(r^2/\lambda z) = \{8.5 \text{ to } 1.1\}$
- Atmospheric Parameters
 - Platform at 12 km altitude (sea level)
 - Relay at 21 km altitude (sea level)
 - Clear1 atmosphere (factor=1)
 - 5 phase screens
 - Low Order Correction turned on
 - 50 random realizations
- Error bars are one standard deviation

Unless otherwise specified, these system parameters were used throughout.

Relay through Vacuum & Atmosphere

6 jmansell@aos-llc.com

WaveTrain and tempus

- tempus
 - General Purpose Time-Domain Component-Based Modeling Tool
- WaveTrain
 - Wave-Optics Modeling Tool Based on tempus
- Both are FREE for government work
- WaveTrain is becoming the industry standard for waveoptics modeling
 - It is being used by almost every major government contractor
 - Many of these contractors have contributed to the development of WaveTrain
- An investment in WaveTrain or tempus is not lost because for government use they are:
 - open-source & non-proprietary
- tempus can work with existing modeling software.
 - no duplication of effort or need to learn too much new software

Propagation without Turbulence

jmansell@aos-llc.com

E OPTICAL SYSTEMS

Propagation with Turbulence

Relay Modeling Results

10 jmansell@aos-llc.com

Goals

- Show that beam shaping causes better power coupling and
 - does not significantly deteriorate beam quality
 - can be done in the atmospheric path
 - does not require any additional parts

Beam Shaping Concept

Potential Solution

- Virtually all HEL platforms contain an AO system
- The deformable mirror (DM) in the AO system could be used to apply a phase profile to shape the beam if
 - The amplitude is small
 - The aberration is low spatial frequency
 - The aberration does not significantly reduce beam quality

Wave-Optics Modeling

Beam Shaping Implementations

- Iterative Fourier Transform
 - Gerchberg-Saxon
- Searching with a DM
 GESA and SPGD
- Searching about a basis set
 - Zernikes
 - Radial Polynomials

$$\sum_{i=1}^{n} a_i \left| r \right|^i$$

Adding Radial Terms

jmansell@aos-llc.com

2nd and 4th Order Terms Only

17 jmansell@aos-llc.com

Optimizing Spherical Aberration in Vacuum

18 jmansell@aos-llc.com

Spherical Aberration Power Coupling Increase

19 jmansell@aos-llc.com

Best Spherical Aberration Amplitude

Range (km)

Optimizing Spherical Aberration

21 jmansell@aos-llc.com

Comparing Atmospheric Received Power with and Without Spherical Aberration

22 jmansell@aos-llc.com

Effect of Beam Shaping on Beam Quality

Comparing Atmospheric Strehl Ratio with and Without Spherical Aberration

24 jmansell@aos-llc.com

RMS Phase Difference with and without Optimal Spherical Aberration

25 jmansell@aos-llc.com

Counteracting Beam Quality Degradation

 Many relay mirror system designs have an AO system on the relay platform that can easily clean-up the beam.

26 jmansell@aos-llc.com

Beam Shaping Laboratory Evaluation

28 jmansell@aos-llc.com

- Measured ~500 Hz resonance (1" diameter)
- Available up to 6" in diameter COTS ~1 m possible
- Achieved ~1 m focal length
 - -40μ m throw with 330V
- Electrostatic snapdown did not rupture membrane

No Voltage

WaveTrain Setup

Beam Shaping with a Deformable Mirror

32 jmansell@aos-llc.com

Conclusions

- Beam shaping can increase the coupling for a typical relay engagement by 7.3% on average
 - Even in the presence of atmospheric turbulence
- Can be implemented for free in a relay system with adaptive optics.

Questions?

Justin Mansell jmansell@aos-llc.com

(505) 245-9970 x184

34 jmansell@aos-llc.com

