Laser Beam Diagnostic Sensors Modeled in WaveTrain

Brian Henderson Justin Mansell MZA Associates Corporation Albuquerque, NM

DEPS March 5, 2008

A necessary disclaimer...

• We are not trying to advocate a particular beam quality measurement technique.

 Presented here are two beam quality measures that we have implemented in WaveTrain

 We intend to demonstrate WaveTrain's flexibility while implementing two specific beam quality measures

Beam Quality is a metric commonly used to quantify the performance of a laser system

Often thought of as "How well can this beam be focused?"

A beam with high quality will ¹⁰⁰ diverge much slower than a beam ¹⁵⁰ with low quality ²⁰⁰

DE weapons applications require high beam quality to deliver maximum power to the target

Selection of a particular beam quality measure depends on the application requirements

Even within an established technique, variations exist on how certain parameters are computed

Metric	Parameter	Variations
M 2	Beam Width	 Width at first nulls Variance of intensity profile Width at 1/e or 1/e² intensity D86 (86% Total Energy) Width of fitted Gaussian 2σ (ISO 11146 standard)
Power on Target	Mask Definition	 Rectangular or Circular Size / Diameter

This presentation is an introduction to WaveTrain's beam quality meters

M-squared Beam Quality

Definition & Computation

WaveTrain Implementation

Power on Target Meter

Power on target can be defined in terms of the fraction of beam power in a region

The mask opening can be defined in terms of the diffraction limited spot size

Circular MaskRectangular Mask $D_{DL} = \frac{2.44 f \lambda}{d}$ $D_{DL} = \frac{2.0 f \lambda}{d}$

A power-in-the-bucket plot can be generated by varying the mask diameter

WaveTrain's Power-on-Target Meter was implemented with existing subsystems

WaveTrain Implementation

The WaveTrain PowerMeter and SimpleFieldSensor work together to compute the power of a WaveTrain

Any WaveTrain simulation can use the Power-on-Target Meter

Implementation details of the Power-on-Target Meter are hidden by WaveTrain at this level in the hierarchy

Test System

Aberrations applied to field to test Power-On-Target

0.015

x 10⁻³

0.8

x 10⁻³

Tilt Y: Far Field Mag

bhenderson@mza.com

Tilt Y

50 -

TDL beam quality decreases with increasing aberration magnitude

The effect of tilt can be removed with a tracking loop

Meter

M-squared is a commonly employed measure of beam quality

M² was developed by Tony Siegman and Steve Townsend as a method of characterizing laser beams

M² describes a beam in terms of its deviation from its fundamental TEM₀₀ mode (Gaussian)

A standard method for computing M² is defined in ISO 11146

ISO standard 11146 defines beam width in terms of the beam second moment

Second Central Moment

 $\sigma_x^2 = \frac{\iint (x - x_0)^2 I(x, y) dx dy}{\iint I(x, y) dx dy}$ $I = \frac{\iint (y - y_0)^2 I(x, y) dx dy}{\iint I(x, y) dx dy}$ where $(x, y_0) =$ Beam Center I(x, y) = Irradiance Profile

Beam Width $w_x \equiv 2\sigma_x$ $w_y \equiv 2\sigma_y$

The beam center (x_0, y_0) is the first moment of the beam (centroid)

Defining beam width measure is very important

Beam Width

- Width at first nulls
- Variance of intensity profile
- Width at 1/e or 1/e² intensity
- D86 (86% Total Energy)
- Width of fitted Gaussian
- 2σ (ISO 11146 standard)

90 Deg Astigmatism: Far Field Mag

Focus: Far Field Mag

Tilt Y: Far Field Mag

Top level description of M-squared algorithm

- 1. Measure the width of the beam near the beam waist in several locations to estimate the waist location.
- 2. Measure the beam width at several locations further away from the waist to characterize the divergence of the beam.

- 3. Fit the resulting measurements with a quadratic.
- 4. Extract beam quality from fitted coefficients

M-squared algorithm

Find the approximate location of the beam waist

Propagate to N points distributed evenly around the beam waist location and measure the beam width at each point

Fit the resulting beam width measurements to a parabola and extract the beam quality

2

Find the approximate location of the beam waist

Propagate to N points distributed evenly around the beam waist location and measure the beam width at each point

This step is characterizing the beam divergence

Fit the resulting beam width measurements to a parabola and extract the beam quality

N Measurements

 $f(x) = ax^2 + bx + c$

Find a least squares solution for (a, b, c) using SVD

Fit the resulting beam width measurements to a Step 3 parabola and extract the beam quality $w^{2} = w_{0}^{2} + \left(\frac{M^{2}\lambda}{\pi w_{0}}\right)^{2} \langle \langle -z_{0} \rangle^{2}$ Equation relating beam waist width/location, and M-squared $w^{2} = \left(\frac{M^{2}\lambda}{\pi w_{0}}\right)^{2} z^{2} + \left(-2z_{0}\left(\frac{M^{2}\lambda}{\pi w_{0}}\right)^{2}\right) z + \left(\left(\frac{M^{2}\lambda}{\pi w_{0}}\right)^{2} z_{0}^{2} + w_{0}^{2}\right)$ $a = \left(\frac{M^2\lambda}{\pi w_0}\right)^2, b = \left(-2z_0\left(\frac{M^2\lambda}{\pi w_0}\right)^2\right), c = \left(\left(\frac{M^2\lambda}{\pi w_0}\right)^2 z_0^2 + w_0^2\right)^2 \left(\frac{M^2\lambda}{\pi w_0}\right)^2 z_0^2 + w_0^2\right)^2$ $z_0 = \frac{-b}{2a}, w_0 = \sqrt{c - \frac{b^2}{4a}}, M^2 = \frac{\pi}{2\lambda}\sqrt{4ac - b^2}$ Solve for beam waist width/location and M-squared in terms of a, b, and c $z_0 =$ location of beam waist w_0 = beam width at beam waist A. E. Siegman, "How to (Maybe) Measure Laser Beam Quality," Tutorial presentation at the Optical Society of America Annual Meeting, Long Beach, M^2 = beam quality California, October 1997.

The core functionality of the WaveTrain M-squared meter is implemented as a C++ class, M2MeterCore

WaveTrain has a highly extensible architecture.

SVD least squares matrix inversion accomplished using Boost C++ Library

M²=(1,1) z0=(-2627.27,-2627.27) w0=(0.0428461,0.0428461)

Any WaveTrain simulation can use the M² beam quality meter

Define source beam shape in terms of Hermite-Gaussian Modes to test M-squared BQ Meter

TEM₀₁

TEM₁₀

The effect of the Hermite-Gaussian modes on M-squared beam quality is easily computed

M-squared values for Hermite-Gaussian modes increase according to the following equations

$$M_X^2 = 2n+1$$
$$M_Y^2 = 2m+1$$
$$TEM$$

nm

Using these equations, we can predict the values of M-squared in the x and y directions for any Hermite-Gaussian mode

A. E. Siegman, Steven W. Townsend, "Output Beam Propagation and Beam Quality from a Multimode Stable-Cavity Laser," IEEE JOURNAL OF QUANTUM ELECTRONICS. VOL. 29. NO. 4. APRIL 1993

30

M-Squared Beam Quality for TEM_{0m}

M-Squared Beam Quality for TEM_{0m}

Future Work

- Continue anchoring efforts
- Evaluate performance with more complex laser resonator models

Acknowledgements

- Funding for this work

 LADERA Contract from AFRL
- Special Thanks
 - -Morris Maynard (MZA)
 - -Robert Praus (MZA)

Conclusions

Never assume that different beam quality values are comparable unless the measurement method is well defined

WaveTrain's flexible architecture allows the designer to choose an appropriate beam quality metric

Questions?

Brian Henderson bhenderson@mza.com (505) 245-9970, x160

Backup Slides

Tilt X

Tilt Y

45 Deg Astigmatism

Focus

90 Deg Astigmatism

Trefoil

2X DL Aperture

TEM00, M2x=0.995754, M2y=0.995754

TEM01, M2x=2.996031, M2y=0.996037

TEM02, M2x=4.996054, M2y=0.995973

TEM10, M2x=0.995979, M2y=2.996012

TEM11, M2x=2.996303, M2y=2.996303

TEM12, M2x=4.996317, M2y=2.996245

TEM13, M2x=6.996416, M2y=2.996131

bhenderson@mza.com

52

TEM20, M2x=0.995958, M2y=4.996114

TEM21, M2x=2.996320, M2y=4.996235

TEM22, M2x=4.996256, M2y=4.996256

TEM23, M2x=6.996352, M2y=4.996143

TEM30, M2x=0.995984, M2y=6.996141

TEM31, M2x=2.996316, M2y=6.996160

TEM32, M2x=4.996093, M2y=6.996346

TEM33, M2x=6.996238, M2y=6.996238

bhenderson@mza.com

62