Experimental Beam Control using WaveTrain

Justin Mansell, Morris Maynard, Steve Coy, and Robert Praus *MZA Associates Corporation*

> Arturo Jacobs Boeing-SVS

Outline

- Relay Mirror Application
- AO System Modeling
- AO System Design
 - Optical Design
 - Software Methodology
- System Construction and Results

Relay Mirror Application

Picture provided by Boeing-SVS

Propagation without Turbulence

MZA

Propagation with Turbulence

Capture Efficiency

Existing Modeling

- WaveTrain has been used to model many different relay mirror engagements.
- Based upon this modeling, it has been shown that AO improves the relay efficacy.
- Boeing-SVS was interested in doing a laboratory demonstration of this system using low-cost AO hardware in their inventory.

Modeled AO System:

Can we build a useful AO system with what we have?

Existing AO Hardware at SVS

Key Component Specifications

Device	Specifications
LC SLM	7.68 mm square
	(15-µm pixels, 512x512)
DM	25 mm (17mm actuated)
	37 hex grid actuators / ~2.4 mm spacing
WFS	88x66 array of lenses (~5000 lenses)
	72 µm square / 2-mm focal length
	(6.3 x 4.8mm)

The Membrane Deformable Mirror

Cross-Sectional View

NOTE: Assumed actuator size = 80% of actuator separation

Membrane DM Influence Functions

Basic WT Beam Control

Effect of Turbulence on Image Quality

<u>Setup:</u> $D/r_0=3.0$, One phase screen, 50 m/s wind velocity

AO System Design

AO Project Goals

- Short Term (6-months):
 - Develop a complete functioning AO system to demonstrate atmospheric aberration compensation.
 - Anchor the AO laboratory results to the WaveTrain model.
- Long Term (6-18 months):
 - Explore advanced throughput enhancement concepts.

Triple-Pass Optical Setup

Control Computer

Triple-Pass Aberration Generator

Software Implementation Strategy

- We recognized that the setup, alignment, and characterization of the hardware would take a substantial portion of the allotted time.
- This did not leave a lot of time for software development.
- We chose to try to leverage the investment already made in WT software to avoid costly duplicative software development.

WT Data Processing Components

- Components built for signal processing can be triggered in several ways:
 - Output Requested
 - Input Changed
 - Temporal Triggering
- These components are well suited for arbitrary signal processing, like is done in Simulink or LabView.

				÷					÷					÷				
÷	÷	÷	÷	÷	•	• •			Ľ.	÷	÷	÷	÷	÷	÷	÷	÷	
•	÷	÷	÷	1	٠.	• •			I.	•	1	1	÷	÷	÷	÷	1	ł
٠.			۰.	÷.,	<u>. </u>							4		۰.	۰.	۰.	۰.	1
÷	÷	÷	÷	÷	Σ		►				1?	ı.	÷	÷	÷	÷	÷	1
1				÷.,	_	_	_	_	-	-				÷		1	÷.	
	InterpPhaseScreen InterpToLC										ł							
🗌 Array <float> phaseScreen 🛛 🔇</float>											ļ							
ĵ,	Grid≺float> screenOut													Ì				
·	÷	·	÷	f	03	at (dxy	/ 1	5	.0	e-	6		÷	÷	·	·	•
÷	÷	÷	÷	i	nt	I	nx)	/ 2	25	6				ļ	÷	ļ	÷	ļ
				<u> </u>									-					

Implementation Summary

Software Additions and Modifications

- Atmospheric Path Model
 - Modify code to output phase screens
- MEMS Membrane DM Components
 - Include anti-snap-down software
- Hartmann WFS Components
 - Added input for reference spot locations
 - Added inputs for designating pixel areas for centroiding
 - Added a Southwell wavefront reconstructor
- Liquid Crystal Components
 - Created WT components to handle non-linear response and the static aberration of the LC backplane

WaveTrain Setup

Laboratory Results

Layout Picture

WFS Measurement

The measured wavefront amplitude matched within 2%

Comparison of DM IFs to Simulation

Comparison of Lab and Simulation Strehl Camera

Triple Pass

WFS Comparison

The measurements from the Shack-Hartmann wavefront sensor that were processed by WaveTrain matched the phase screen written to the LC within the noise floor of the sensor.

Closed-Loop Results

AO On

AO Off

Averaged over 50 frames $D/r_0 = 5$ $f_G = 100$ Hz, $f_{Loop} = 1000$ Hz Modes removed: 2 Strehl Improvement: 2.12 (On / Off) 0.47 (Off / On)

Conclusions & Future Work

- WaveTrain was used as the processing core to implement a closed-loop AO system.
- The AO system components were anchored to a WaveTrain simulation.
- Future Work:
 - Anchor the WT system performance to the model.
 - Create WT components to direct write data to the hardware.
 - Use a shared memory buffer to communicate with a display and interface application.
 - Model advanced relay engagement concepts.

