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Relay Mirror Application

Picture provided by Boeing-SVS
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Propagation without Turbulence
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Propagation with Turbulence
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Capture Efficiency

Diffraction Only
Diffraction + Turbulence*
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Existing Modeling

• WaveTrain has been used to model many 
different relay mirror engagements.

• Based upon this modeling, it has been 
shown that AO improves the relay efficacy.

• Boeing-SVS was interested in doing a 
laboratory demonstration of this system 
using low-cost AO hardware in their 
inventory.
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Modeled AO System:

Can we build a useful AO system 
with what we have?
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Existing AO Hardware at SVS

LCPM

DM

WFS
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Key Component  Specifications

88x66 array of lenses (~5000 lenses)

72 µm square / 2-mm focal length 

(6.3 x 4.8mm)

WFS

25 mm (17mm actuated)

37 hex grid actuators / ~2.4 mm spacing

DM

7.68 mm square 

(15-µm pixels, 512x512)

LC SLM

SpecificationsDevice
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The Membrane Deformable Mirror
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Membrane DM Influence Functions
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Basic WT Beam Control

It travels through the 
atmosphere.

Light is emitted 

from a point source.

1

2

3
A telescope 

collimates it.

4 Light 

reflects 
from a DM

5 A 

Hartmann 
sensor 

creates a 
vector of 
slopes.

6

The slopes are 
multiplied by a 

reconstructor
matrix to create 
DM commands.

7
The commands 

are put through an 
integrator and sent 

to the DM.
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Effect of Turbulence on Image Quality

Setup: D/r0=3.0, One phase screen, 50 m/s wind velocity

Ideal Real without
Adaptive Optics

Real with
Adaptive Optics
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AO System Design
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AO Project Goals

• Short Term (6-months): 

– Develop a complete functioning AO system to 

demonstrate atmospheric aberration 

compensation.

– Anchor the AO laboratory results to the 

WaveTrain model.

• Long Term (6-18 months): 

– Explore advanced throughput enhancement  

concepts.
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Triple-Pass Optical Setup
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Triple-Pass Aberration Generator
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Software Implementation Strategy

• We recognized that the setup, alignment, 
and characterization of the hardware 
would take a substantial portion of the 
allotted time.

• This did not leave a lot of time for software 
development.

• We chose to try to leverage the investment 
already made in WT software to avoid 
costly duplicative software development.
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WT Data Processing Components

• Components built for signal 
processing can be triggered 
in several ways:
– Output Requested

– Input Changed

– Temporal Triggering

• These components are well 
suited for arbitrary signal 
processing, like is done in 
Simulink or LabView.
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Implementation Summary

WaveTrain mex
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Software Additions and Modifications

• Atmospheric Path Model
– Modify code to output phase screens

• MEMS Membrane DM Components
– Include anti-snap-down software

• Hartmann WFS Components
– Added input for reference spot locations 
– Added inputs for designating pixel areas for 

centroiding
– Added a Southwell wavefront reconstructor

• Liquid Crystal Components
– Created WT components to handle non-linear 

response and the static aberration of the LC 
backplane 
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WaveTrain Setup

WT generates a 
phase screen 

ready for the LC.

A WFS camera 
image is input to 

the system.

Slopes are 
calculated.

The forces and 
voltages are 

calculated from 
the slopes and 
sent to the DM.
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Laboratory Results
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Layout Picture
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f = +500mm
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Peak-to-Valley = 2.66 µm

Theoretical Peak-to-Valley

WFS Measurement

WFS Image Processing in WaveTrain

The measured wavefront amplitude matched within 2%
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Comparison of DM IFs to Simulation
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Comparison of Lab and Simulation 

Strehl Camera
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Triple Pass
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WFS Comparison
WFS MeasurementPhase Screen

The measurements from the Shack-Hartmann wavefront sensor that 

were processed by WaveTrain matched the phase screen written to the LC

within the noise floor of the sensor.
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Closed-Loop Results

Averaged over 50 frames
D/r0 = 5
fG = 100 Hz,  fLoop = 1000 Hz
Modes removed: 2

AO On AO Off

Strehl Improvement:
2.12 (On / Off)
0.47 (Off / On)
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Conclusions & Future Work

• WaveTrain was used as the processing core to 

implement a closed-loop AO system.

• The AO system components were anchored to a 

WaveTrain simulation.

• Future Work:  

– Anchor the WT system performance to the model.

– Create WT components to direct write data to the 
hardware.

– Use a shared memory buffer to communicate with a 
display and interface application.

– Model advanced relay engagement concepts.


