Progress Towards Low-Cost Compact Metric Adaptive Optics Systems

Justin D. Mansell, Brian Henderson, Brennen Wiesner, Robert Praus, and Steve Coy

Active Optical Systems, LLC

<u>www.aos-llc.com</u>

Outline

- Introduction & Motivation
- Low-Cost Component Development

 DMs, Drive Electronics, & AO Controllers
- Optical Setup
- System Demonstrations
 - PC-interfaced System
 - Microcontroller System
- Evaluation of the Microcontroller SPGD
- Conclusions & Future Work

Applications of Adaptive Optics

- Laser Wavefront Control
 - Intensity Profile Shaping
 - Laser Machining
 - Optical Tweezers
 - Atmospheric Aberration
 Compensation
- Imaging
 - Astronomy
 - Target Inspection
 - Ophthalmology

Barriers to Mass Usage

	Barrier	Solution	
	Cost	Implementation via our unique compact low- cost hardware	
	Complexity	Construction of complete active optical systems	
	Inertia	AO systems can often relax requirements and increase system functionality	

What is Low Cost?

- Patterson published results of a \$25k system in 2000.
 - \$30k in today's dollars
- Other vendors are selling:
 - Low Actuator Count DMs for ~\$2k
 - Drive Electronics for ~\$5k
 - Systems for ~\$25k+
- We present here a low-cost metric AO system that is commercially available for \$7,500

membrane mirror C. Paterson, I. Munro and J. C. Dainty Applied Optics, The Blackett Laboratory, Imperial College of Science, Technology and Medicine, London, SW7 2BZ, UK carlp@ic.ac.uk Abstract: A low cost adaptive optics system constructed almost entirely of commercially available components is presented. The system uses a 37 actuator membrane mirror and operates at frame rates up to 800 Hz using a single processor. Numerical modelling of the membrane mirror is used to optimize parameters of the system. The dynamic performance of the system is investigated in detail using a diffractive wavefront generator based on a ferroelectric spatial light modulator. This is used to produce wavefronts with time-varying abertations. The ability of the system to correct for Kolmogorov turbulence with different strengths and effective wind speeds is measured experimentally using the wavefront generator. © 2000 Optical Society of America OCIS codes: (010.1080) Adaptive optics; (010.1330) Atmospheric turbulence References and links 1. G. Vdovin and P. M. Sarro, "Flexible mirror micromachined in silicon," Appl. Opt. 34, 2968-2972 (1995).
 E. Steinhaus and S. G. Lipson, "Bimorph piezoelectric flexible mirror," J. Opt. Soc. Am. 69 478-481 (1979). J. C. Dainty, A. V. Koryabin, and A. V. Kudryashov, "Low-order adaptive deformable mirror, Appl. Opt. 37, 4663–4668 (1998). 4. D. Bonaccini, G. Brusa, S. Esposito, P. Salinari, P. Stefanini, and V. Billotti, "Adaptive optics wave-front corrector using addressable liquid-crystal retarders 2.," In Active and adaptive optica components, Proc. SPIE 1543, 133–143 (Osserv Astrofis Arcstri, I-50125 Florence, Italy, 1992). 5. G. D. Love, "Wave-front correction and production of Zernike modes with a liquid- crystal spatial light modulator," Appl. Opt. 36, 1517–1524 (1997).
S. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, and M. Shilko, "On the use of dual frequency nematic material for adap-tive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-6 (2000). http://www.opticsexpress.org/oearchive/source/18848.htm http://okotech.com/mirrors/technical/index.html 8. R. P. Grosso and M. Yellin, "The membrane mirror as an adaptive optical element," J. Opt. Soc. Am. 67, 399-406 (1977). 9. W. H. Press, S. A. Taukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. (Cambridge Univ. Press, Cambridge, 1992). 10. E. S. Claffin and N. Barekat, "Configuring an electrostatic membrane mirror by least-square:

A low cost adaptive optics system using a

- fitting with analytically derived influence functions," J. Opt. Soc. Am. A 3, 1833-1839 (1986).
- F. Roddir, "The problematic of adaptive optics design," in Adaptive optics for astronomy, D. M. Alloin and J. M. Mariotti, eds., (Kluwer Academic, 1994), pp. 89–111. 12. M. A. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characteri-
- In . A. S. Forn, and S. Bobal, and T. Wilson, Dynamic substitution generation for the character p ration and testing of optical systems, 70 ppt. Latt. 23, 1840-1831 (1969).
 A. Glindsmann, R. G. Lane, and J. C. Dahty, "Simulation of time-evolving speckle patterns using Kolmogrow statistics," J. Med. Opt. A0, 2331-2388 (1963).

Patterson et al, Optics Express 6, No. 9, 175-85

Outline

- Introduction & Motivation
- Low-Cost Component Development

 DMs, Drive Electronics, & AO Controllers
- Optical Setup
- System Demonstrations
 - PC-interfaced System
 - Microcontroller System
- Evaluation of the Microcontroller SPGD
- Conclusions & Future Work

Packaged DM

Actuator Patterns

Hexagonal

Square

Segmented Annular

	۲	۲	۲	۲	
۲	۲	۲	۲	۲	۲
۲	۲	۲	۲	۲	۲
۲	۲	۲	۲	۲	٥
۲	۲	۲	۲	۲	8
	۲	۲	۲	۲	

Membrane Influence Functions (IFs)

Square Grid Influence Functions

jmansell@aos-llc.com

٠

Annular Influence Functions

ACTIVE OPTICAL SYSTEMS

Measured Influence Functions

Each Actuator at ~300V Produces ~1 wave at 633nm

<u>DM in Focus</u>

NOTE: Imager is not exactly in the image plane.

Estimated >20 µm of throw

Electrostatic Snap-Down

AL SYSTEMS

Snap-Down Results

Resonance Frequency

Because the polymer membranes are currently hand assembled, the resonance frequency changes from device to device.

Pellicle Characteristics

- Wavefront Quality : λ/2 per inch
 mostly in an astigmatic term
- Demonstrated high reflectivity coatings
 - Q-Switched damage at 3.3 J/cm² (235 MW/cm²)
 - HR coated membrane demonstrated survivability under 12 kW CW 1064nm
- Available COTS up to 6" in Diameter

Thermally Induced Distortion at 1s

Static Aberrations

- Mounting the pellicle to the substrate can be tricky.
 - See Dave Dayton's results from yesterday
- We have developed a new mounting process at AOS that has dramatically reduced the aberration amplitude created by this process.

Summary of Polymer Membrane DMs

Characteristic	Value		
Resonance	~500 Hz		
Throw	~40 µm (330VDC at Snap-		
	Down)		
Size	6" COTS Parts		
Coatings	Metal & Dielectric Stacks (12kW cw 1064nm survived, 3.3 J/cm ² Damage Threshold for Q-Switched)		

Potential Applications for Polymer Membrane DMs

Good for:

- Low-Order Quasi-Static Imaging and Laser Aberration Compensation
 - Telescopes, Microscopes, Laser Machining, etc.
- Basic Laser Beam Shaping
- Maybe good for:
 - Vertical Path Atmospheric (Astronomy)
- Probably not good for:
 - Large Telescopes
 - Megawatt Class Lasers
 - Long Path Free-Space Optical Comm.

Drive Electronics

Drive Electronics

Converting the Drive Electronics into an AO Controller

- The USB interface chip we chose to use was an inexpensive (~\$10) microcontroller that was designed for low-cost applications like toys.
- During the development, we discovered that it had integrated ADCs and sufficient computational capability to do metric adaptive optics.

Outline

- Introduction & Motivation
- Low-Cost Component Development

 DMs, Drive Electronics, & AO Controllers
- Optical Setup
- System Demonstrations
 - PC-interfaced System
 - Microcontroller System
- Evaluation of the Microcontroller SPGD
- Conclusions & Future Work

Optical Setup Picture

DM Rise and Fall Time

ACTIVE OPTICAL SYSTEMS

~2.8 ms Rise Time

Rise Time

~10% to 90% Fall Time = 144 µs Rise Time Oscillation ~3.7 kHz

Outline

- Introduction & Motivation
- Low-Cost Component Development

 DMs, Drive Electronics, & AO Controllers
- Optical Setup
- System Demonstrations
 - PC-interfaced System
 - Microcontroller System
- Evaluation of the Microcontroller SPGD
- Conclusions & Future Work

Stochastic Parallel Gradient Descent (SPGD) Algorithm

- 1. Start with a point in the error space.
- 2. Take a step in a random direction to another point.
- Find the "optimum" position based on the gradient.
- 4. Repeat to 2

Final Position (V")

SPGD Algorithm Math

Take a Random Trial StepV' = V + dVStep Sizewhere $dV = \Delta$ rand(N), Δ is the maximum step size,rand(...) is a random numbervector from -1 to +1, andN is the number of actuators

Take a Step Based on the Trial Result

$$V'' = V + (\eta M_{initial} - M_{step}) dV$$

ACTIVE OPTICAL SYSTEMS

Gain

Brute-Force Searching Algorithm

- Choose each actuator and scan over the entire 255 count range in 5 count intervals and set it to the best value.
- After scanning all the actuators, repeat the scan.

PC-Based Optimization

Typical Point Spread Functions

Before AO (Mirror Under Optimal Focal Bias)

After AO

NOTE: Fringing due to the window on the camera

Outline

- Introduction & Motivation
- Low-Cost Component Development

 DMs, Drive Electronics, & AO Controllers
- Optical Setup
- System Demonstrations
 - PC-interfaced System
 - Microcontroller System
- Evaluation of the Microcontroller SPGD
- Conclusions & Future Work

Average Results (30 ms delay, 20 averages, 16s)

Definition of Output Parametrization

Rise Times (s)

ICAL SYSTEMS

ACTIVE

Converged Final Values (V)

AL SYSTEMS

RMS after Converged (V)

CAL SYSTEMS

Effect of Sample Delay on Final Value

Conclusions

- We have developed low cost:
 - DMs (\$1,500)
 - USB Interfaced Drive Electronics (\$5,000)
 - Metric Adaptive Optics Systems (\$7,500)
- We characterized the parameters of our microcontroller SPGD metric AO system to find the effect of
 - the gain (η) ,
 - the step size (Δ),
 - and the measurement delay.

Questions?

Justin Mansell

jmansell@aos-llc.com

(505) 245-9970 x184

