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Motivation 1: 

Model More Effects

• Wave-optics is not 
sufficient to model some 
optical effects like 

– reflection-induced image 

inversion and

– geometric image rotation.

Image Rotation

Image Inversion
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Motivation 2: 

6 DOF Perturbation Analysis

• Mechanical disturbances of 
optics and the resulting 
induced beam jitter control 
are typically modeled 
separately from wave-
optics.

• These effects impact wave-
optics performance.

• We want a mechanism for 
control model integration.
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Our Solution

• Augment our wave-optics with a 5x5 ray matrix 
formalism based on simplified ray tracing.

• Why?
– Wave-optics infrastructure exists

– Complete ray tracing is complex and time consuming

– 5x5 ray matrices 
• simple to implement, 

• fast, 

• sufficient to add desired effects

– Consistent with 
• beam jitter control matrix development and 

• FEM modeling
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Presentation Limitations

• Removed some mathematical methods 
that are excessively time-consuming to 
present.

– More time to focus on highlights 

• These details are available in the paper.
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Simplified Ray Tracing
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Ray Trace Procedure

• Start with a 

coordinate in a plane.

• Find the intersection 

of that coordinate in 

the next plane.

• Find next direction 

through interaction 

with plane normal 

plus curvature.
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Curvature-Induced Tilt

• Additional tilt added 

due to optic curvature 

is handled separately 

by

– calculating the distance 
from the center of the 

optic (called beam 
walk) and

– adding the appropriate 
curvature-induced tilt.
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Sequential Evaluation Motivation

Wave-optics systems 
model propagation 
through optics as a 
sequential process.

Wave-optics systems 
are peppered with 

non-ideal optics like 
deformable mirrors.
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Generalizing Ray Tracing

• We were looking for a way to:

– apply ray tracing to a general ray and 

– apply it sequentially to an optical system

• Needed Effects:

– image rotation

– image inversion

– ability to do perturbation analysis
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Ray Matrix Formalism
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Introduction - ABCD Matrices

• The most common 
ray matrix 
formalism is the 
2x2 or ABCD that 
describes how a 
ray height, x, and 
angle, θx, changes 
through a system.
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2x2 Ray Matrix Examples

Propagation

Lens
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Example ABCD Matrices

n1 = starting refractive index
n2 = ending refractive index

R = effective radius of 
curvature

Curved 
Dielectric 

Interface 
(normal 

incidence)

R = effective radius of 

curvature

Curved Mirror

(normal 

incidence)

f = effective focal lengthLens

L = physical length

n = refractive index

Propagation

VariablesFormMatrix Type
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3x3 and 4x4 Formalisms

• Siegman’s Lasers

book describes two 
other formalisms: 3x3 
and 4x4

• The 3x3 formalism 
added the capability 
for tilt addition and off-
axis elements.

• The 4x4 formalism 
included two-axis 
operations like axis 
inversion and image 
rotation.
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5x5 Formalism

• We developed a 
5x5 ray matrix 
formalism as a 
combination of the 
2x2, 3x3, and 4x4.
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Example 5x5 System Matrices
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Example 5x5 System Matrices 2
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Limitations

• No Astigmatism
– axially symmetric curvature only

• Why?
– This can be represented, but there may be  

insufficient degrees of freedom for arbitrary axis 
astigmatism.

– Astigmatism can be put into the wave-optics.
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Procedure for Generation of a 

5x5 Ray Matrix
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Motivation for Modified Procedure

• Multiplying 5x5 ray matrices allow for 

all the desired effects to be 

accumulated

• The magnitude of the image rotation 

cannot be determined with a 

sequential ray matrix approach

• A different procedure had to be 

devised to incorporate this effect
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Simple Ray Trace Procedure

• 5 probe rays

• Rays modeled as 
simple geometric ray 
tracing 

– thin optic 

approximation

– curvature handled 

separately
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Reduction of Probe Rays to 5x5 Matrix

• Determine the 

difference in location 

and direction from the 

unperturbed central 

ray (a).

• Project these 

differences onto the x 

and y beam axes in 

global coordinates.

• RESULT: 5x5 matrix 
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Sequential Evaluation of 5x5 Matrices

• Ray matrices can be multiplied sequentially to 
establish a system ray matrix.

• We established a sequential technique that 
involves:
– Propagate from the source to a plane a small delta 

from the optic, which is a “virtual sensor”.

– That plane becomes the next “virtual source”.

Virtual Source/Sensor 1

Virtual Source/Sensor 2 Source

Target
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Example Systems Analysis using 

5x5 Ray Matrices
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Simple Powered Optic

[0 0 δ] R=2,f=1
[0 0 0]
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02δ-100
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z
y

Unperturbed Matrix

x

NOTE: δ terms will be

removed henceforth.
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Retro-Reflector Case
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Focal Plane Inversion Plane Test Case
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Set of 3 Image Rotation Matrices 1/2
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45° Image Rotation
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Image Rotation Test Case
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Rectifying the Wave-Optics Results 

with 5x5 Ray Matrix Effects
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Rationale for Combining 

Ray and Wave Results (Rectification)

• In some locations, 
wave-optics and ray 
matrix effects need 
to be combined.
– We call this process 

“rectification”.

• Example locations 
include
– Deformable Mirrors

– Aberrated Optics

– Wavefront Sensors
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Rectification Outline

• Ray Matrix Effects needing Rectification

• Effect Magnitude Determination

• Order of Operations

• Method of Applying Effects
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Effects Modeled by Ray Matrix

• Reflection Inversion

• Image Rotation

• Magnification

• Power

• Translation

• Tilt

• Propagation

Traditionally done with wave-optics, but can 

adversely impact wave-optics mesh parameters

Needs to be done with wave-optics

Can be done with wave-optics, but adversely 

affects the wave-optics mesh parameters 

Cannot be done with wave-optics.
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Magnitudes of the Ray Effects

• Send 9 probe rays 

through the ray 

matrix

– 4 angles, 4 offsets, 

and 1 center

• Analysis of each of 

the rays coming out 

of the system allows 

determination of the 

magnitudes of the 

effects 
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The 9 Probe Rays
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Rationale for Needing Order of Operations

• At a rectification plane, many ray matrix effects 
have been combined into a single ray-matrix
– The order of application of the effects has been lost

• Operations happen in parallel

• Sometimes we only have the ray matrix

• Large number of sequential operations
– Any 5x5 ray matrix can be decomposed into 7 effects

– Minimizing the number of rectifications reduces noise

• Effects interact
– EXAMPLE: power and magnification - applying power 

then magnifying reduces the optical power by the 
magnification
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Operations Interaction Matrix
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The 15 Potential Orders

invert magnify rotate tilt power translate15

invert magnify rotate tilt power translate14

invert rotate magnify tilt power translate13

invert magnify power rotate tilt translate12

magnify invert power rotate tilt translate11

magnify power invert rotate tilt translate10

invert magnify rotate power tilt translate9

magnify invert rotate power tilt translate8

invert rotate magnify power tilt translate7

invert magnify power rotate translate tilt6

magnify invert power rotate translate tilt5

magnify power invert rotate translate tilt4

invert magnify rotate power translate tilt3

magnify invert rotate power translate tilt2

invert rotate magnify power translate tilt1

OperationsOrder
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Rectification Implementation

• Two Options

– Interpolate the complex field 

– Interpolate the applied phase/magnitude or 

sensor grid

• Interpolation of complex numbers tends to 
create more noise than interpolating real 
numbers, so generally the latter is 
preferred.



jmansell@mza.com 42

Conclusions & Future Work
• Developed a 5x5 Ray Matrix Formalism

• Developed a Technique for Integrating the 
effects modeled by ray matrices with 
Wave-Optics

• Future Work:
– Show how the 5x5 ray matrix can be used to 

specify the wave-optics propagation
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Questions?


