Integrating Wave-Optics and 5x5 Ray Matrices for More Accurate Optical System Modeling

Justin D. Mansell, Robert Suizu, Robert W. Praus, Brent Strickler, Anthony Seward, and Stephen Coy

Outline

- Motivation
- Methodology
- Simplified Ray Tracing
- 5x5 Ray Matrix Formalism
- Integration of 5×5 Ray Matrices with Wave-Optics
- Conclusions \& Future Work

Motivation 1: Model More Effects

- Wave-optics is not sufficient to model some optical effects like
- reflection-induced image inversion and
- geometric image rotation.

Motivation 2: 6 DOF Perturbation Analysis

- Mechanical disturbances of optics and the resulting induced beam jitter control are typically modeled separately from waveoptics.
- These effects impact waveoptics performance.
- We want a mechanism for control model integration.

Our Solution

- Augment our wave-optics with a 5×5 ray matrix formalism based on simplified ray tracing.
- Why?
- Wave-optics infrastructure exists
- Complete ray tracing is complex and time consuming
- 5×5 ray matrices
- simple to implement,
- fast,
- sufficient to add desired effects
- Consistent with
- beam jitter control matrix development and
- FEM modeling

Presentation Limitations

- Removed some mathematical methods that are excessively time-consuming to present.
- More time to focus on highlights
- These details are available in the paper.

Simplified Ray Tracing

Ray Trace Procedure

- Start with a coordinate in a plane.
- Find the intersection of that coordinate in the next plane.
- Find next direction through interaction with plane normal plus curvature.

Curvature-Induced Tilt

- Additional tilt added due to optic curvature is handled separately by
- calculating the distance from the center of the optic (called beam walk) and
- adding the appropriate curvature-induced tilt.

$$
\begin{gathered}
f=R / 2 \\
\Delta \theta_{\text {local }}=\left[\begin{array}{cc}
0 & 1 / f \\
-1 / f & 0
\end{array}\right] \cdot b w_{i+1}^{\text {local }} \\
\Delta \theta_{\text {global }}=M_{\text {transform }} \cdot \Delta \theta_{\text {local }} \\
\bar{v}_{i+1}=\bar{v}_{i+1}+\Delta \theta_{\text {global }} \times \bar{v}_{i+1}
\end{gathered}
$$

Sequential Evaluation Motivation

Generalizing Ray Tracing

- We were looking for a way to:
- apply ray tracing to a general ray and
- apply it sequentially to an optical system
- Needed Effects:
- image rotation
- image inversion
- ability to do perturbation analysis

Ray Matrix Formalism

Introduction - ABCD Matrices

- The most common ray matrix formalism is the 2×2 or ABCD that describes how a ray height, x, and angle, θ_{x}, changes through a system.

2x2 Ray Matrix Examples

Propagation

$$
\begin{gathered}
x^{\prime}=x+\theta_{x} \cdot L \\
{\left[\begin{array}{c}
x^{\prime} \\
\theta_{x}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{x}
\end{array}\right]}
\end{gathered}
$$

Lens

$$
\begin{gathered}
\theta_{x}{ }^{\prime}=\theta_{x}-x / f \\
{\left[\begin{array}{c}
x^{\prime} \\
\theta_{x}^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{x}
\end{array}\right]} \\
\end{gathered}
$$

Example ABCD Matrices

Matrix Type	Form	Variables
Propagation	$\left[\begin{array}{cc}1 & L / n \\ 0 & 1\end{array}\right]$	$\mathrm{L}=$ physical length $\mathrm{n}=$ refractive index
Lens	$\left.\begin{array}{cc}1 & 0 \\ -1 / f & 1\end{array}\right]$	$\mathrm{f}=$ effective focal length
Curved Mirror (normal incidence)	$\left[\begin{array}{cc}1 & 0 \\ -2 / R & 1\end{array}\right]$	$\mathrm{R}=$ effective radius of
curvature		

3x3 and 4x4 Formalisms

- Siegman's Lasers book describes two other formalisms: 3×3 and 4×4
- The 3×3 formalism added the capability for tilt addition and offaxis elements.
- The 4×4 formalism included two-axis operations like axis inversion and image rotation.

5x5 Formalism

- We developed a 5×5 ray matrix formalism as a combination of the $2 \times 2,3 \times 3$, and 4×4.
$\left[\begin{array}{ccccc}A_{x} & B_{x} & 0 & 0 & E_{x} \\ C_{x} & D_{x} & 0 & 0 & F_{x} \\ 0 & 0 & A_{y} & B_{y} & E_{y} \\ 0 & 0 & C_{y} & D_{y} & F_{y} \\ 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x \\ \theta_{x} \\ y \\ \theta_{y} \\ 1\end{array}\right]$

Example 5x5 System Matrices

Matrix Type	Form	Variables
Image Rotation	$\left[\begin{array}{ccccc}C & 0 & S & 0 & 0 \\ 0 & C & 0 & S & 0 \\ -S & 0 & C & 0 & 0 \\ 0 & -S & 0 & C & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$	$\mathrm{C}=\cos \left(\theta_{\text {image }}\right)$ $\mathrm{S}=\sin \left(\theta_{\text {image }}\right)$ $\theta_{\text {image }}=$ image rotation angle
Magnification	$\left[\begin{array}{ccccc}M_{x} & 0 & 0 & 0 & 0 \\ 0 & 1 / M_{x} & 0 & 0 & 0 \\ 0 & 0 & M_{y} & 0 & 0 \\ 0 & 0 & 0 & 1 / M_{y} & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$	$\mathrm{M}_{\mathrm{x}}=$ magnification
along x axis		
$\mathrm{M}_{\mathrm{y}}=$ magnification		
along y axis		
Reflection Inversion (reflection from a mirror in the plane of the x-axis)	$\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$	

Example 5x5 System Matrices 2

Matrix Type	Form	Variables
Image Translation	$\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & \Delta x \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \Delta y \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$	$\Delta \mathrm{x}=$ translation along the x axis $\Delta \mathrm{y}=$ translation along the y axis
Tilt Addition	$\left[\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \Delta \theta_{x} \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & \Delta \theta_{y} \\ 0 & 0 & 0 & 0 & 1\end{array}\right]$	$\Delta \theta_{\mathrm{x}}=$ added tilt along the x axis $\Delta \theta_{\mathrm{y}}=$ added tilt along the y axis

Limitations

- No Astigmatism
- axially symmetric curvature only
- Why?
- This can be represented, but there may be insufficient degrees of freedom for arbitrary axis astigmatism.
- Astigmatism can be put into the wave-optics.

Procedure for Generation of a $5 x 5$ Ray Matrix

Motivation for Modified Procedure

- Multiplying 5×5 ray matrices allow for all the desired effects to be accumulated
- The magnitude of the image rotation cannot be determined with a sequential ray matrix approach
- A different procedure had to be devised to incorporate this effect

Simple Ray Trace Procedure

- 5 probe rays
- Rays modeled as simple geometric ray tracing
- thin optic approximation
- curvature handled separately

Reduction of Probe Rays to 5x5 Matrix

- Determine the difference in location and direction from the unperturbed central
ray (a).
- Project these differences onto the x and y beam axes in global coordinates.
- RESULT: 5x5 matrix

$$
\begin{aligned}
& \Delta v_{b}=\bar{v}_{\text {last }}(b)-\bar{v}_{\text {last }}(a) \quad \text { I } \Delta P_{b}=P_{\text {last }}(b)-P_{\text {last }}(a) \\
& \Delta v_{c}=\bar{v}_{\text {last }}(c)-\bar{v}_{\text {last }}(a) \quad \text { I } \Delta P_{c}=P_{\text {last }}(c)-P_{\text {last }}(a) \\
& \Delta v_{d}=\bar{v}_{\text {last }}(d)-\bar{v}_{\text {last }}(a) \quad \text { I } \Delta P_{d}=P_{\text {last }}(d)-P_{\text {last }}(a) \\
& \Delta v_{e}=\bar{v}_{\text {last }}(e)-\bar{v}_{\text {last }}(a) \quad \text { : } \Delta P_{e}=P_{\text {last }}(e)-P_{\text {last }}(a) \\
& {\left[\begin{array}{lllll}
A 1 & A 2 & A 3 & A 4 & A 5 \\
B 1 & B 2 & B 3 & B 4 & B 5 \\
C 1 & C 2 & C 3 & C 4 & C 5 \\
D 1 & D 2 & D 3 & D 4 & D 5 \\
E 1 & E 2 & E 3 & E 4 & E 5
\end{array}\right]} \\
& A 1=\Delta P_{d} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \quad B 1=\Delta v_{d} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \\
& A 2=\Delta P_{b} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \quad B 2=\Delta v_{b} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \\
& A 3=\Delta P_{e} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \quad B 3=\Delta v_{e} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \\
& A 4=\Delta P_{c} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \quad B 4=\Delta v_{c} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \\
& A 5=\Delta P_{a} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }} \quad B 5=\Delta v_{a} \bullet \bar{x}_{\text {beam }}{ }^{\text {global }}
\end{aligned}
$$

Sequential Evaluation of 5×5 Matrices

- Ray matrices can be multiplied sequentially to establish a system ray matrix.
- We established a sequential technique that involves:
- Propagate from the source to a plane a small delta from the optic, which is a "virtual sensor".
- That plane becomes the next "virtual source".

Example Systems Analysis using 5x5 Ray Matrices

Simple Powered Optic

Unperturbed Matrix				
1	2δ	0	0	0
-1	1	0	0	0
0	0	-1	2δ	0
0	0	1	-1	0
0	0	0	0	1

NOTE: δ terms will be removed henceforth.

Retro-Reflector Case

Only 2 of 3 bounces shown.

Unperturbed Matrix				
	0	0	0	0
0	-1	0	0	0
0	0	-1	0	0
0	0	0	1	0
0	0	0	0	1

Focal Plane Inversion Plane Test Case

Set of 3 Image Rotation Matrices $\mathbf{1 / 2}$

45° Image Rotation

Unperturbed Matrix			
$1 / \sqrt{ } 2$ 3.12 $1 / \sqrt{ } 2$ 3.12 0 0 $1 / \sqrt{ } 2$ 0 $1 / \sqrt{ } 2$ 0 $1 / \sqrt{ } 2$ 3.12 $-1 / \sqrt{ } 2$ -3.12 0 0 $1 / \sqrt{ } 2$ 0 $-1 / \sqrt{ } 2$ 0 0 0 0 0 1$\|$			

Image Rotation Test Case

Rectifying the Wave-Optics Results with 5x5 Ray Matrix Effects

Rationale for Combining Ray and Wave Results (Rectification)

- In some locations, wave-optics and ray matrix effects need to be combined.
- We call this process "rectification".
- Example locations include
- Deformable Mirrors
- Aberrated Optics
- Wavefront Sensors

Rectification Outline

- Ray Matrix Effects needing Rectification
- Effect Magnitude Determination
- Order of Operations
- Method of Applying Effects

Effects Modeled by Ray Matrix

- Reflection Inversion
- Image Rotation
- Magnification
- Power

Traditionally done with wave-optics, but can adversely impact wave-optics mesh parameters

- Translation
- Tilt

Can be done with wave-optics, but adversely affects the wave-optics mesh parameters

- Propagation

Needs to be done with wave-optics

Magnitudes of the Ray Effects

- Send 9 probe rays through the ray matrix
- 4 angles, 4 offsets, and 1 center
- Analysis of each of the rays coming out of the system allows determination of the magnitudes of the effects

Rationale for Needing Order of Operations

- At a rectification plane, many ray matrix effects have been combined into a single ray-matrix
- The order of application of the effects has been lost
- Operations happen in parallel
- Sometimes we only have the ray matrix
- Large number of sequential operations
- Any 5×5 ray matrix can be decomposed into 7 effects
- Minimizing the number of rectifications reduces noise
- Effects interact
- EXAMPLE: power and magnification - applying power then magnifying reduces the optical power by the magnification

Operations Interaction Matrix

This interaction matrix gives 15 possible orders.

The 15 Potential Orders

| Order | Operations | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | invert | rotate | magnify | power | translate | tilt |
| | $\mathbf{2}$ | magnify | invert | rotate | power | translate tilt |
| 3 | invert | magnify | rotate | power | translate | tilt |
| 4 | magnify | power | invert | rotate | translate | tilt |
| 5 | magnify | invert | power | rotate | translate | tilt |
| 6 | invert | magnify | power | rotate | translate | tilt |
| 7 | invert | rotate | magnify | power | tilt | translate |
| 8 | magnify | invert | rotate | power | tilt | translate |
| 9 | invert | magnify | rotate | power | tilt | translate |
| 10 | magnify | power | invert | rotate | tilt | translate |
| 11 | magnify | invert | power | rotate | tilt | translate |
| 12 | invert | magnify | power | rotate | tilt | translate |
| 13 | invert | rotate | magnify | tilt | power | translate |
| 14 | invert | magnify | rotate | tilt | power | translate |
| 15 | invert | magnify | rotate | tilt | power | translate |

Rectification Implementation

- Two Options
- Interpolate the complex field
- Interpolate the applied phase/magnitude or sensor grid
- Interpolation of complex numbers tends to create more noise than interpolating real numbers, so generally the latter is preferred.

Conclusions \& Future Work

- Developed a 5x5 Ray Matrix Formalism
- Developed a Technique for Integrating the effects modeled by ray matrices with Wave-Optics
- Future Work:
- Show how the 5×5 ray matrix can be used to specify the wave-optics propagation

$$
\begin{aligned}
U_{2}\left(x_{2}, y_{2}\right) & =\frac{\exp (j k L)}{j \lambda B} \iint_{-\infty}^{\infty} U_{1}\left(x_{1}, y_{1}\right)_{1} \\
& \exp \left[\frac{j k}{2 B}\left(A\left(x_{1}^{2}+y_{1}^{2}\right)-2\left(x_{1} x_{2}+y_{1} y_{2}\right)+D\left(x_{2}^{2}+y_{2}^{2}\right)\right)\right] d x_{1} d y
\end{aligned}
$$

From Siegman's Lasers

Acknowledgements

- Thanks to the ABL SPO for their continued support of this development.
- Special thanks to Dr. Salvatore Cusumano and Capt. Jason Tellez.

Questions?

