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Introduction & Motivation

* Model propagation of a
beam through a complex /

system of simple optics in as N
few steps as possible. /

 We developed a technique
for using ray matrices to /
iInclude image rotation and NS

reflection image inversion in J
wave-optics modeling. J/
* Here we introduce a

technique to prescribe a

wave-optics propagation [
using a ray matrix.
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Introduction - Ray Matrices

* The most common
ray matrix
formalism is 2x2

—a.k.a. ABCD matrix

* |t describes how a
ray height, x, and
angle, 6,, changes 6,'| |[C DJ &
through a system. x'= AX + BO
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2x2 Ray Matrix Examples

Propagation

| ) X'=X+6XDL
T e
; . ~ 16| |0 1]/6,

Lens
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Example ABCD Matrices

Matrix Type Form Variables
Propagation 1 L/n L = physical length
0 1 n = refractive index
Lens _ ; 0} f = effective focal length
~Uf 1
Curved Mirror L 0 R = effective radius of

(normal {_ 2/R J curvature
iIncidence)

Curved 1 o1| N4 = starting refractive index
Dielectric { ( VR J n, = ending refractive index
Interface ~(n, =)/ R = effective radius of
(normal curvature

incidence)
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3x3 and 4x4 Formalisms

/’ _ — —_

e Siegman’s Lasers A B X
book describes two C D
other formalisms: 3x3 - X
and 4x4 e 00 1]t
* The 3x3 formalism E = Offset
added the capability (_ PrAddedTH

for tilt addition and off-
axis elements.

 The 4x4 formalism
Included two-axis
operations like axis
Inversion and image
rotation.

4 x4

Dual-Axis
8 ABCD
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5x5 Formalism

e \We use a 5x5 ray Image Rotation
matrix formalism as a

combination of the
2x2, 3x3, and 4x4.

— Previously introduced
by Paxton and Latham
* Allows modeling of
effects not in wave-
optics.
— Image Rotation

— Reflection Image _
Inversion Dual-Axis  Tilt and Offset
ABCD

o
I
| ||
I
il

jmansell@mza.com



Ray Matrix Wave-Optics

Propagation Introduction
 Introduced a way of applying effects captured by
a 5x5 ray matrix model with wave-optics.
— Image Inversion
— Image Rotation

* This relied on a parallel sequential wave-optics
model and integration of these effects at the
end.

 We complete the integration technique here by
showing how the residual dual-axis ABCD
matrices embedded in a 5x5 ray matrix can be
used to specify a wave-optics propagation.
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ABCD Ray Matrix Wave-Optics
Propagator
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Implementation Options

» Siegman combined U, (x,y,)=2PUL),
the ABCD terms 148
directly in the ) " Al? +y.2)-
Huygens integral. [ [Uy(x,y,)exp ZJ—B 2(x.X, + Y.y, )+ | |dxdy,
— Less intuitive N D(x,2 +y,)
— Cannot obviously be
built from simple
components A B 1 oM™, 0
* He then also C D}{—l/ f, J{o 1/|v|j
introduced a way of -
decomposing any 1 LM, 0 10
ABCD propagation 0 1|0 1M, |-1/f 1

iInto 5 individual steps.
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Siegman Decomposition Algorithm

« Choose A B
magpnifications M, & c pl™
M, (M=M;"M,) T R

» Calculate the Ly =—>=
effective M, M
propagation length B
and the focal T = M _ A
lengths. o

f, =
1/M-D

13 ————————
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Modifications to the Siegman
Decomposition Algorithm

» We found that one of the A B}{ L 0}.
magnification terms was © D} -, 1
unnecessary (M,=1.0). M0 }{1 L}{ 1 0}

 We modified Siegman’s 0 UMJO 1]-1/f 1
algorithm to better address

two important situations: { M 0 }
— image planes and -1/Mf  1/M
— focal planes.
 We worked on how add LA
diffraction into choosing D, = AD, + 277?1

magnification.

14 ————————
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Eliminating a Magnification Term
 We determined Original Decomposition

that one of the two
magnification @ @ i> @
1 0

terms that ]

Siegman put into A B}{ }{MZ 0 }

his decomposition C D] [FVf, 10 UM,

was unnecessary. 1 L}{Ml 0 }{ 1 0}

— There were five 0 1|0 1M |-1/f 1
steps 2= 0mmm e e e mm e mm——---

(f1 ,M1,L,M2,f2)and New Decomposition

four inputs @ i> @ @

(ABCD).
A B 1 O| | M 0O (1 L 1 0
{c D}:Lllfz 1Ho 1/M}{O 1}{—1/1‘1 1}
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Image Plane: B=0

* This case Is an

image plane S N S e X
J .p ' ~1/f, 1|0 /M| |-M/f, 1M
* Thereis no

propagation _ _
inVOlved here, but Slegernan Our Algorithm
there is Loy =7 =0 L, =0
— curvature and (- B _o C=-1/Mt,
— magnification. M-A —

B MC

o
)
||L |
|’| ||
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Automated Magnificatio
Problems wit

n Determination:

h the Focal Plane

» We were trying to 1 f
automate the 0 1
selection of the L

magnification by
setting it equal to the

A term of the ABCD
matrix.

— This minimizes the
mesh requirements

In doing so, we found
that the
decomposition
algorithm was
problematic at a focal
plane.
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Propagation to a Focus: A=0

o oo e 1

* For a collimated beam Siegman, M=A Siegman, M=1
going to a focus, this ray
envelope diameter is M=A=0-— M=1>
Zero. f o

« To handle this case, we L, =— = L, =—=f
force the user to specify M M
the magnification. ‘£ ff ‘£ B _¢

- 1727 A N 17 an A

 We also give the user M-A O M—-A
guidance on how to f B
choose magnification f,=——=0 , = =
when there is substantial o -1 1/M -D
diffraction...
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Choosing Magnification while
Considering Diffraction

 We propose here to
add a diffraction term
to the magnification to
avoid the case of
small M.

* We added a tuning
parameter, n, which is
the number of
effective diffraction
limited diameters.
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Common Diffraction Patterns
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Integrated Energ
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We concluded that
n=>5 is sufficient to
capture more than
99% of the 1D

integrated energy.



Modified Decomposition Algorithm

 |If at an image plane
(B=0)
AM=A (possible need for
interpolation)

dApply focus

 Else

dSpecify M, considering
diffraction if necessary

[ Calculate and apply
the effective
propagation length and
the focal lengths.
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Wave-Optics Implementation
Detalls
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Implementing Negative Magnification

 After going through a focus, the
magnification is negated.

« We implement negative magnification by
inverting the field in one or both axes.

— We consider the dual axis ray matrix

propagation using the 5x5 ray matrix
formalism.

24
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Dual Axis Implementation

 Cylindrical
te¥égcélg§s along U,=P-F*(H -F(,))

the axes are . 2 2
handled by H = exp|- Jﬂ%(zx f+ Zy fy )]
dividing the _ .

convolution kernel - (x) = Fourier Transform of X
Into separate parts  p _ pnace Eactor

for the two axes.
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WaveTrain Implementation

B \WaveTrain incident

WaveTrain transmitted

||!||| [
|
H
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Example: ABCD Propagator
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Example System

f/2

2f of

« Compared sequential and ABCD
propagation fields
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Field before the Lens
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Field After Lens by Distance /2
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Field After Lens by Distance f
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Field After Lens by Distance 3f/2
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Field After Lens by Distance 2f
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ABCD Ray Matrix Fourier Propagation
Conclusions

* We have modified Siegman’'s ABCD
decomposition algorithm to

— remove one of the magnifications and

— Include several special cases such as
* Image planes
* Propagation to a focus

* This enables complex systems comprised

of simple optical elements to be modeled
in 4 steps (one Fourier propagation).
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Questions?

jmansell@mza.com
(505) 245-9970 x122
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