Simplified Algorithm for Implementing an ABCD Ray Matrix Wave-Optics Propagator

Justin D. Mansell, Robert Praus, Anthony Seward, and Steve Coy *MZA Associates Corporation*

Outline

- Introduction & Motivation
 - Ray Matrices
 - Siegman Decomposition Algorithm
- Modifications to the Siegman ABCD Decomposition Algorithm
 - Simplification by Removing One Step
 - Addressing Degeneracies and Details
- Comparison of ABCD and Sequential Wave-Optics Propagation
- Conclusions

Introduction & Motivation

- Model propagation of a beam through a complex system of simple optics in as few steps as possible.
- We developed a technique for using ray matrices to include image rotation and reflection image inversion in wave-optics modeling.
- Here we introduce a technique to prescribe a wave-optics propagation using a ray matrix.

Ray Matrix Formalism

Introduction - Ray Matrices

- The most common ray matrix formalism is 2x2

 a.k.a. ABCD matrix
- It describes how a ray height, x, and angle, θ_x , changes through a system.

2x2 Ray Matrix Examples

Example ABCD Matrices

Matrix Type	Form	Variables
Propagation	$\begin{bmatrix} 1 & L/n \end{bmatrix}$	L = physical length
		n = refractive index
Lens	$\begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix}$	f = effective focal length
Curved Mirror (normal incidence)	$\begin{bmatrix} 1 & 0 \\ -2/R & 1 \end{bmatrix}$	R = effective radius of curvature
Curved Dielectric Interface (normal incidence)	$\begin{bmatrix} 1 & 0 \\ -(n_2 - n_1)/R & 1 \end{bmatrix}$	n ₁ = starting refractive index n ₂ = ending refractive index R = effective radius of curvature

3x3 and 4x4 Formalisms

8

- Siegman's <u>Lasers</u> book describes two other formalisms: 3x3 and 4x4
- The 3x3 formalism added the capability for tilt addition and offaxis elements.
- The 4x4 formalism included two-axis operations like axis inversion and image rotation.

5x5 Formalism

- We use a 5x5 ray matrix formalism as a combination of the 2x2, 3x3, and 4x4.
 - Previously introduced by Paxton and Latham
- Allows modeling of effects not in waveoptics.
 - Image Rotation
 - Reflection Image Inversion

Ray Matrix Wave-Optics Propagation Introduction

- Introduced a way of applying effects captured by a 5x5 ray matrix model with wave-optics.
 - Image Inversion
 - Image Rotation
- This relied on a parallel sequential wave-optics model and integration of these effects at the end.
- We complete the integration technique here by showing how the residual dual-axis ABCD matrices embedded in a 5x5 ray matrix can be used to specify a wave-optics propagation.

ABCD Ray Matrix Wave-Optics Propagator

Implementation Options

- Siegman combined the ABCD terms directly in the Huygens integral.
 - Less intuitive
 - Cannot obviously be built from simple components
- He then also introduced a way of decomposing any ABCD propagation into 5 individual steps.

$$U_{2}(x_{2}, y_{2}) = \frac{\exp(jkL)}{j\lambda B} \cdot \int_{-\infty}^{\infty} U_{1}(x_{1}, y_{1}) \exp\left[\frac{jk}{2B} \begin{pmatrix} A(x_{1}^{2} + y_{1}^{2}) - \\ 2(x_{1}x_{2} + y_{1}y_{2}) + \\ D(x_{2}^{2} + y_{2}^{2}) \end{pmatrix}\right] dx_{1} dy_{1}$$

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/f_2 & 1 \end{bmatrix} \begin{bmatrix} M_2 & 0 \\ 0 & 1/M_2 \end{bmatrix}.$$
$$\begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} M_1 & 0 \\ 0 & 1/M_1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f_1 & 1 \end{bmatrix}$$

Siegman Decomposition Algorithm

- Choose magnifications M₁ & M₂ (M=M₁*M₂)
- Calculate the effective propagation length and the focal lengths.

Modifications to the Siegman Decomposition Algorithm

- We found that one of the magnification terms was unnecessary (M₁=1.0).
- We modified Siegman's algorithm to better address two important situations:
 - image planes and
 - focal planes.
- We worked on how add diffraction into choosing magnification.

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/f_2 & 1 \end{bmatrix}.$$
$$\begin{bmatrix} M & 0 \\ 0 & 1/M \end{bmatrix} \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f_1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} M & 0 \\ -1/Mf & 1/M \end{bmatrix}$$

$$D_2 = AD_1 + 2\eta \frac{L\lambda}{D_1}$$

Eliminating a Magnification Term

- We determined that one of the two magnification terms that Siegman put into his decomposition was unnecessary.
 - There were five steps (f_1, M_1, L, M_2, f_2) and four inputs (ABCD).

Image Plane: B=0

• This case is an image plane.

$$\begin{bmatrix} 1 & 0 \\ -1/f_2 & 1 \end{bmatrix} \begin{bmatrix} M & 0 \\ 0 & 1/M \end{bmatrix} = \begin{bmatrix} M & 0 \\ -M/f_2 & 1/M \end{bmatrix}$$

- There is no propagation involved here, but there is
 - curvature and
 - magnification.

Automated Magnification Determination: Problems with the Focal Plane We were trying to $\begin{bmatrix} 1 & f \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} = \begin{bmatrix} 0 & f \\ -1/f & 1 \end{bmatrix}$

Siegman, M=A

 $M = A = 0 \rightarrow$

 $L_{eq} = \frac{f}{M} = \infty$

 $f_1 = \frac{f}{M - A} = \frac{f}{0}$

 $f_2 = \frac{f}{\infty - 1} = 0$

- We were trying to automate the selection of the magnification by setting it equal to the A term of the ABCD matrix.
 - This minimizes the mesh requirements
- In doing so, we found that the decomposition algorithm was problematic at a focal plane.

Propagation to a Focus: A=0 $\begin{bmatrix} 1 & f \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} = \begin{bmatrix} 0 & f \\ -1/f & 1 \end{bmatrix}$

- For a collimated beam going to a focus, this ray envelope diameter is zero.
- To handle this case, we force the user to specify the magnification.
- We also give the user guidance on how to choose magnification when there is substantial diffraction...

Choosing Magnification while Considering Diffraction

- We propose here to add a diffraction term to the magnification to avoid the case of small M.
- We added a tuning parameter, η, which is the number of effective diffraction limited diameters.

$$D_2 = AD_1 + 2\eta \frac{L\lambda}{D_1}$$
$$M = \frac{D_2}{D_1} = A + 2\eta \frac{L\lambda}{D_1^2}$$
$$= A + \frac{\eta}{2} \frac{1}{N_f}$$

Common Diffraction Patterns

We concluded that η=5 is sufficient to capture more than 99% of the 1D integrated energy.

Modified Decomposition Algorithm

- If at an image plane (B=0)
 M=A (possible need for interpolation)
 Apply focus
- Else
 - Specify M, considering diffraction if necessary
 - Calculate and apply the effective propagation length and the focal lengths.

$$\begin{bmatrix} M - \frac{LM}{f_1} & LM \\ \frac{LM}{f_1 f_2} - \frac{1}{M f_1} - \frac{M}{f_2} & \frac{1}{M} - \frac{LM}{f_2} \end{bmatrix}$$
for M₁ = 1.0

$$L_{eq} = \frac{L}{M_1^2} = \frac{B}{M}$$
$$f_1 = \frac{B}{M - A}$$
$$f_2 = \frac{B}{1/M - D}$$

Wave-Optics Implementation Details

Implementing Negative Magnification

- After going through a focus, the magnification is negated.
- We implement negative magnification by inverting the field in one or both axes.
 - We consider the dual axis ray matrix propagation using the 5x5 ray matrix formalism.

Dual Axis Implementation

 Cylindrical telescopes along the axes are handled by dividing the convolution kernel into separate parts for the two axes.

$$U_{2} = P \cdot F^{-1} (H \cdot F(U_{1}))$$

$$H = \exp \left[-j\pi\lambda \left(z_{x} f_{x}^{2} + z_{y} f_{y}^{2}\right)\right]$$

$$F(x) = \text{Fourier Transform of x}$$

$$P = \text{Phase Factor}$$

WaveTrain Implementation

Example: ABCD Propagator

Example System

 Compared sequential and ABCD propagation fields

Field before the Lens

Field After Lens by Distance f/2

Field After Lens by Distance f

Field After Lens by Distance 3f/2

Field After Lens by Distance 2f

ABCD Ray Matrix Fourier Propagation Conclusions

- We have modified Siegman's ABCD decomposition algorithm to
 - remove one of the magnifications and
 - include several special cases such as
 - Image planes
 - Propagation to a focus
- This enables complex systems comprised of simple optical elements to be modeled in 4 steps (one Fourier propagation).

Questions?

jmansell@mza.com (505) 245-9970 x122

