

Justin D. Mansell , Robert Praus, Anthony Seward, and Steve Coy

MZA Associates Corporation

- Introduction \& Motivation
- Ray Matrices
- Siegman Decomposition Algorithm
- Modifications to the Siegman ABCD Decomposition Algorithm
- Simplification by Removing One Step
- Addressing Degeneracies and Details
- Comparison of ABCD and Sequential Wave-Optics Propagation
- Conclusions

- Model propagation of a beam through a complex system of simple optics in as few steps as possible.
- We developed a technique for using ray matrices to include image rotation and reflection image inversion in wave-optics modeling.
- Here we introduce a technique to prescribe a wave-optics propagation using a ray matrix.

, M *

- The most common ray matrix formalism is 2 x 2
- a.k.a. ABCD matrix
- It describes how a ray height, x, and angle, θ_{x}, changes through a system.

$$
\begin{gathered}
{\left[\begin{array}{c}
x^{\prime} \\
\theta_{x}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{x}
\end{array}\right]} \\
x^{\prime}=A x+B \theta_{x} \\
\theta_{x}{ }^{\prime}=C x+D \theta_{x}
\end{gathered}
$$

Propagation

$$
\begin{gathered}
x^{\prime}=x+\theta_{x} \square L \\
{\left[\begin{array}{c}
x^{\prime} \\
\theta_{x}^{\prime}
\end{array}\right]=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
\theta_{x}
\end{array}\right]}
\end{gathered}
$$

Lens

$$
\begin{gathered}
\theta_{x}{ }^{\prime}=\theta_{x}-x / f \\
{\left[\begin{array}{c}
x^{\prime} \\
\theta_{x}{ }^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]\left[\begin{array}{c}
x \\
\theta_{x}
\end{array}\right]}
\end{gathered}
$$

\(\left.\left.$$
\begin{array}{|c|c|c|}\hline \text { Matrix Type } & \text { Form } & \text { Variables } \\
\hline \text { Propagation } & {\left[\begin{array}{cc}1 & L / n \\
0 & 1\end{array}\right]} & \begin{array}{c}\mathrm{L}=\text { physical length } \\
\mathrm{n}=\text { refractive index }\end{array} \\
\hline \text { Lens } & {\left[\begin{array}{cc}1 & 0 \\
-1 / f & 1\end{array}\right]} & \mathrm{f}=\text { effective focal length } \\
\hline \begin{array}{c}\text { Curved Mirror } \\
\text { (normal } \\
\text { incidence) }\end{array} & {\left[\begin{array}{cc}1 & 0 \\
-2 / R & 1\end{array}\right]} & \mathrm{R}=\text { effective radius of } \\
\text { curvature }\end{array}
$$\right] \begin{array}{ccc}\hline \begin{array}{c}Curved

Dielectric

Interface

(normal

incidence)\end{array} \& {\left[-\left(n_{2}-n_{1}\right) / R\right.} \& 1\end{array}\right]\)| $\mathrm{n}_{1}=$ starting refractive index |
| :---: |
| $\mathrm{R}=$ ending refractive index |
| curvature |

- Siegman's Lasers book describes two other formalisms: 3×3 and 4×4
- The $3 x 3$ formalism added the capability for tilt addition and offaxis elements.
- The $4 x 4$ formalism included two-axis operations like axis inversion and image rotation.

Dual-Axis

$x \times \leftrightarrows$ 禺

- We use a $5 x 5$ ray matrix formalism as a combination of the $2 \times 2,3 \times 3$, and 4×4.
- Previously introduced by Paxton and Latham
- Allows modeling of effects not in waveoptics.
- Image Rotation
- Reflection Image Inversion

- Introduced a way of applying effects captured by a 5×5 ray matrix model with wave-optics.
- Image Inversion
- Image Rotation
- This relied on a parallel sequential wave-optics model and integration of these effects at the end.
- We complete the integration technique here by showing how the residual dual-axis ABCD matrices embedded in a 5×5 ray matrix can be used to specify a wave-optics propagation.

- Siegman combined the ABCD terms directly in the Huygens integral.
- Less intuitive
- Cannot obviously be built from simple components
- He then also introduced a way of decomposing any ABCD propagation into 5 individual steps.

$$
\begin{aligned}
& U_{2}\left(x_{2}, y_{2}\right)=\frac{\exp (j k L) .}{j \lambda B} . \\
& \iint_{-\infty}^{\infty} U_{1}\left(x_{1}, y_{1}\right) \exp \left[\begin{array}{l}
j k \\
\frac{j B}{2 B}\left(\begin{array}{l}
A\left(x_{1}^{2}+y_{1}^{2}\right)- \\
2\left(x_{1} x_{1}+y_{1} y_{2}\right)+ \\
D\left(x_{2}^{2}+y_{2}^{2}\right)
\end{array}\right)
\end{array}\right] d x_{1} d y_{1} \\
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{2} & 1
\end{array}\right]\left[\begin{array}{cc}
M_{2} & 0 \\
0 & 1 / M_{2}
\end{array}\right] .} \\
& {\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
M_{1} & 0 \\
0 & 1 / M_{1}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{1} & 1
\end{array}\right]}
\end{aligned}
$$

- Choose magnifications M_{1} \& $M_{2}\left(M=M_{1}{ }^{*} M_{2}\right)$
- Calculate the effective propagation length and the focal lengths.

$$
\begin{gathered}
{\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right] \Rightarrow} \\
L_{e q}=\frac{L}{M_{1}{ }^{2}}=\frac{B}{M} \\
f_{1}=\frac{B}{M-A} \\
f_{2}=\frac{B}{1 / M-D}
\end{gathered}
$$

- We found that one of the magnification terms was unnecessary ($\mathrm{M}_{1}=1.0$).
- We modified Siegman's algorithm to better address two important situations:
- image planes and
- focal planes.
- We worked on how add diffraction into choosing magnification.

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{2} & 1
\end{array}\right] .} \\
& {\left[\begin{array}{cc}
M & 0 \\
0 & 1 / M
\end{array}\right]\left[\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{1} & 1
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
M & 0 \\
-1 / M f & 1 / M
\end{array}\right]
$$

$$
D_{2}=A D_{1}+2 \eta \frac{L \lambda}{D_{1}}
$$

- We determined Original Decomposition that one of the two magnification terms that
Siegman put into
his decomposition
was unnecessary.
- There were five steps
$\left(\mathrm{f}_{1}, \mathrm{M}_{1}, \mathrm{~L}, \mathrm{M}_{2}, \mathrm{f}_{2}\right.$) and four inputs (ABCD).

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{2} & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
M & 0 \\
0 & 1 / M
\end{array}\right]\left[\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{1} & 1
\end{array}\right]
$$

- This case is an image plane.

$$
\left[\begin{array}{cc}
1 & 0 \\
-1 / f_{2} & 1
\end{array}\right]\left[\begin{array}{cc}
M & 0 \\
0 & 1 / M
\end{array}\right]=\left[\begin{array}{cc}
M & 0 \\
-M / f_{2} & 1 / M
\end{array}\right]
$$

- There is no propagation involved here, but

Siegman

$$
L_{e q}=\frac{B}{M}=0
$$

$$
L_{e q}=0
$$

- curvature and

$$
\mathrm{C}=-1 / \mathrm{Mf}_{2}
$$

- magnification.

$$
\begin{aligned}
f_{1} & =\frac{B}{M-A}=0 \\
f_{2} & =\frac{B}{1 / M-D}=0
\end{aligned}
$$

$$
f_{2}=\frac{-1}{M C}
$$

- We were trying to automate the selection of the magnification by setting it equal to the A term of the ABCD matrix.
- This minimizes the mesh requirements
- In doing so, we found that the decomposition algorithm was problematic at a focal plane.

$$
\left[\begin{array}{cc}
1 & f \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & f \\
-1 / f & 1
\end{array}\right]
$$

Siegman, M=A

$$
M=A=0 \rightarrow
$$

$$
L_{e q}=\frac{f}{M}=\infty
$$

$$
f_{1}=\frac{f}{M-A}=\frac{\mathrm{f}}{0}
$$

$$
f_{2}=\frac{f}{\infty-1}=0
$$

$$
\left[\begin{array}{ll}
1 & f \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]=\left[\begin{array}{cc}
0 & f \\
-1 / f & 1
\end{array}\right]
$$

- For a collimated beam going to a focus, this ray envelope diameter is zero.
- To handle this case, we force the user to specify

$$
L_{e q}=\frac{B}{M}=\mathrm{f}
$$ the magnification.

- We also give the user guidance on how to choose magnification when there is substantial diffraction...

$$
\begin{gathered}
\text { Siegman, M=A } \\
M=A=0 \rightarrow \\
L_{e q}=\frac{f}{M}=\infty \\
f_{1}=\frac{f}{M-A}=\frac{f}{0} \\
f_{2}=\frac{f}{\infty-1}=0
\end{gathered}
$$

Siegman, M=1

$$
M=1 \rightarrow
$$

$$
f_{1}=\frac{B}{M-A}=\mathrm{f}
$$

$$
f_{2}=\frac{B}{1 / M-D}=0
$$

- We propose here to add a diffraction term to the magnification to

$$
D_{2}=A D_{1}+2 \eta \frac{L \lambda}{D_{1}}
$$ avoid the case of small M.

- We added a tuning parameter, η, which is the number of effective diffraction limited diameters.

We concluded that $\eta=5$ is sufficient to capture more than 99\% of the 1D integrated energy.

- If at an image plane ($\mathrm{B}=0$)
- M=A (possible need for interpolation)
-Apply focus
- Else

USpecify M, considering diffraction if necessary
-Calculate and apply the effective
propagation length and the focal lengths.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
M-\frac{L M}{f_{1}} & L M \\
\frac{L M}{f_{1} f_{2}}-\frac{1}{M f_{1}}-\frac{M}{f_{2}} & \frac{1}{\mathrm{M}}-\frac{\mathrm{LM}}{\mathrm{f}_{2}}
\end{array}\right]} \\
& \text { for } \mathrm{M}_{1}=1.0
\end{aligned}
$$

$$
\begin{aligned}
L_{e q} & =\frac{L}{M_{1}{ }^{2}}=\frac{B}{M} \\
f_{1} & =\frac{B}{M-A} \\
f_{2} & =\frac{B}{1 / M-D}
\end{aligned}
$$

8***

- After going through a focus, the magnification is negated.
- We implement negative magnification by inverting the field in one or both axes.
- We consider the dual axis ray matrix propagation using the 5×5 ray matrix formalism.
- Cylindrical telescopes along the axes are handled by dividing the convolution kernel into separate parts for the two axes.
$U_{2}=P \cdot F^{-1}\left(H \cdot F\left(U_{1}\right)\right)$
$H=\exp \left[-j \pi \lambda\left(z_{x} f_{x}{ }^{2}+z_{y} f_{y}{ }^{2}\right)\right]$
$F(x)=$ Fourier Transform of x
$P=$ Phase Factor

* *

D

- Compared sequential and ABCD propagation fields

Field Magnitude
Field Phase

Field Magnitude
Field Phase

Field Magnitude

Field Magnitude

*

Field Magnitude

Field Phase

- We have modified Siegman's ABCD decomposition algorithm to
- remove one of the magnifications and
- include several special cases such as
- Image planes
- Propagation to a focus
- This enables complex systems comprised of simple optical elements to be modeled in 4 steps (one Fourier propagation).
jmansell@mza.com
(505) 245-9970 x122

