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Outline
• Introduction & Motivation

– Ray Matrices
– Siegman Decomposition Algorithm

• Modifications to the Siegman ABCD 
Decomposition Algorithm
– Simplification by Removing One Step
– Addressing Degeneracies and Details

• Comparison of ABCD and Sequential 
Wave-Optics Propagation

• Conclusions
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Introduction & Motivation
• Model propagation of a 

beam through a complex 
system of simple optics in as 
few steps as possible.

• We developed a technique 
for using ray matrices to 
include image rotation and 
reflection image inversion in 
wave-optics modeling.

• Here we introduce a 
technique to prescribe a 
wave-optics propagation 
using a ray matrix.

Laser



jmansell@mza.com
4

Ray Matrix Formalism
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Introduction - Ray Matrices
• The most common 

ray matrix 
formalism is 2x2 
– a.k.a. ABCD matrix 

• It describes how a 
ray height, x, and 
angle, θx, changes 
through a system.
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2x2 Ray Matrix Examples
Propagation
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Example ABCD Matrices
Matrix Type Form Variables
Propagation L = physical length

n = refractive index
Lens f = effective focal length

Curved Mirror
(normal 

incidence)

R = effective radius of 
curvature

Curved 
Dielectric 
Interface 
(normal 

incidence)

n1 = starting refractive index
n2 = ending refractive index

R = effective radius of 
curvature
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3x3 and 4x4 Formalisms
• Siegman’s Lasers

book describes two 
other formalisms: 3x3 
and 4x4

• The 3x3 formalism 
added the capability 
for tilt addition and off-
axis elements.

• The 4x4 formalism 
included two-axis 
operations like axis 
inversion and image 
rotation.
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5x5 Formalism
• We use a 5x5 ray 

matrix formalism as a 
combination of the 
2x2, 3x3, and 4x4.
– Previously introduced 

by Paxton and Latham
• Allows modeling of 

effects not in wave-
optics.
– Image Rotation 
– Reflection Image 

Inversion
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Ray Matrix Wave-Optics 
Propagation Introduction

• Introduced a way of applying effects captured by 
a 5x5 ray matrix model with wave-optics.
– Image Inversion 
– Image Rotation

• This relied on a parallel sequential wave-optics 
model and integration of these effects at the 
end.

• We complete the integration technique here by 
showing how the residual dual-axis ABCD 
matrices embedded in a 5x5 ray matrix can be 
used to specify a wave-optics propagation.
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ABCD Ray Matrix Wave-Optics 
Propagator
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Implementation Options
• Siegman combined 

the ABCD terms 
directly in the 
Huygens integral.
– Less intuitive
– Cannot obviously be 

built from simple 
components

• He then also 
introduced a way of 
decomposing any 
ABCD propagation 
into 5 individual steps.
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Siegman Decomposition Algorithm
• Choose 

magnifications M1 & 
M2 (M=M1*M2)

• Calculate the 
effective 
propagation length 
and the focal 
lengths.
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Modifications to the Siegman
Decomposition Algorithm

• We found that one of the 
magnification terms was 
unnecessary (M1=1.0).

• We modified Siegman’s
algorithm to better address 
two important situations: 
– image planes and 
– focal planes.

• We worked on how add 
diffraction into choosing  
magnification.
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Eliminating a Magnification Term
• We determined 

that one of the two 
magnification 
terms that 
Siegman put into 
his decomposition 
was unnecessary.
– There were five 

steps 
(f1,M1,L,M2,f2)and 
four inputs 
(ABCD).
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Image Plane: B=0
• This case is an 

image plane.
• There is no 

propagation 
involved here, but 
there is 
– curvature and
– magnification.
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Automated Magnification Determination: 
Problems with the Focal Plane

• We were trying to 
automate the 
selection of the 
magnification by 
setting it equal to the 
A term of the ABCD 
matrix.
– This minimizes the 

mesh requirements
• In doing so, we found 

that the 
decomposition 
algorithm was 
problematic at a focal 
plane.
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Propagation to a Focus: A=0
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Siegman, M=A• For a collimated beam 
going to a focus, this ray 
envelope diameter is 
zero.

• To handle this case, we 
force the user to specify 
the magnification.

• We also give the user 
guidance on how to 
choose magnification 
when there is substantial 
diffraction…
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Choosing Magnification while 
Considering Diffraction
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• We propose here to 

add a diffraction term 
to the magnification to 
avoid the case of 
small M.

• We added a tuning 
parameter, η, which is 
the number of 
effective diffraction 
limited diameters.



jmansell@mza.com
20

Common Diffraction Patterns
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Integrated Energy

Threshold = 10-10
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We concluded that  
η=5 is sufficient to 
capture more than 
99% of the 1D 
integrated energy.
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Modified Decomposition Algorithm
• If at an image plane 

(B=0)
M=A (possible need for 
interpolation)
Apply focus

• Else
Specify M, considering 
diffraction if necessary
Calculate and apply 
the effective 
propagation length and 
the focal lengths. DM
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Wave-Optics Implementation 
Details
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Implementing Negative Magnification

• After going through a focus, the 
magnification is negated.  

• We implement negative magnification by 
inverting the field in one or both axes. 
– We consider the dual axis ray matrix 

propagation using the 5x5 ray matrix 
formalism.
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Dual Axis Implementation
• Cylindrical 

telescopes along 
the axes are 
handled by 
dividing the 
convolution kernel 
into separate parts 
for the two axes.
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WaveTrain Implementation
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Example: ABCD Propagator
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Example System

• Compared sequential and ABCD 
propagation fields
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Field before the Lens
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Field After Lens by Distance f/2
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Field After Lens by Distance f
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Field After Lens by Distance 3f/2
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Field After Lens by Distance 2f
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ABCD Ray Matrix Fourier Propagation
Conclusions

• We have modified Siegman’s ABCD 
decomposition algorithm to 
– remove one of the magnifications and
– include several special cases such as

• Image planes
• Propagation to a focus

• This enables complex systems comprised 
of simple optical elements to be modeled 
in 4 steps (one Fourier propagation).
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Questions?

jmansell@mza.com
(505) 245-9970 x122
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