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ABSTRACT 
In prior work we introduced a method of choosing mesh parameters for a single wave-optics propagation between two 
effective apertures.  Unfortunately, most systems that require wave-optics modeling, like modeling laser resonators with 
gain media, propagations through the atmosphere, and imaging systems with internal limiting apertures, have multiple 
apertures and phase screens that induce diffraction.  We begin here by augmenting the single propagation theory to 
include diffraction from both apertures and phase aberrations.  We then introduce a technique for analyzing complex 
systems of simple optics to determine the appropriate wave-optics mesh parameters.     
 
Keywords: Fourier optics, wave-optics, mesh parameters, modeling, optical system modeling, mesh spacing, mesh size, 

complex systems. 

1. INTRODUCTION 
In this section the basics of wave-optics modeling are reviewed.  Then a review of our prior work on choosing mesh 
parameters for a single propagation is provided as background. 

1.1. Wave Optics Modeling 
Wave-optics (a.k.a. Fourier optics) models simulate light using the Fresnel approximation of the Huygens-Fresnel 
principle.1  Light propagated between two planes can be modeled using a two-dimensional Fourier transform of a grid 
of samples of the complex electric field.  Although this technique is much more computationally intensive, it allows 
much more detail about the beam to be modeled including the effects of higher-order aberrations and the resulting 
system transfer functions like the modulation transfer function (MTF) or the optical transfer function (OTF).   
 
Using the Huygens-Fresnel principle, the field amplitude, U, at a point in the output plane (x2,y2) is the superposition 
integral of points in the input plane, (x1,y1), inside some limiting aperture Σ and the Green’s function of free space 
(a.k.a. the propagation kernel), h(x1,y1;x2,y2), which is written as, 
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and z is the axial distance between the input and output planes, λ is the wavelength of light being modeled, and k is the 
wave number (2π/λ).  Using the Fresnel approximation, the kernel reduces to  
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Using this form of the kernel, the propagation is a convolution of the input field with the kernel, and is referred to as the 
convolution propagator.   
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Further simplification allows the kernel to be decomposed into three separate terms which are two quadratic (or 
parabolic) phase terms in the input and output planes and a term that is directly analogous to the 2D Fourier transform 
operator.  This form, referred to as the one-step propagator, is written as 
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where the F(…) operator is the 2D Fourier transform operation and the Q(z) is the quadratic phase factor with a radius 
of curvature of z, which can be written as 
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where the subscript, x, represents the plane of the operation. 

1.2. Single Fourier Transform Modeling versus Double Fourier Transform Convolution Propagation Modeling 
There are two commonly used ways of implementing Fourier transform modeling in a computer.  The most basic wave-
optics propagation modeling can be done with a single Fourier transform.  Implementation of this form of propagator 
involves multiplying the field by the quadratic phase factor, Fourier transforming the field, and then multiplying by an 
additional quadratic phase factor and a scaling term.  This is the fastest way of modeling optical propagation, but the 
mesh spacing in the output plane is related to the propagation distance, z, optical wavelength, λ, and the spacing in the 
input plane, δ1, by  

1
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Because of the lack of control over the final plane mesh spacing in the one-step Fourier propagator, a convolution 
propagator is often used for wave-optics simulations.  The convolution propagator is typically implemented on a 
computer by Fourier transforming the input field, multiplying by a convolution kernel, and inverse Fourier transforming 
the field.  Implementation of this type of propagator is very convenient because unlike the one-step Fourier propagator, 
the input and output results are represented with the same grid spacing.  The convolution propagator is generally 
performed relative to a planar reference so that the mesh spacing is the same, but in some cases, like propagating to the 
focal plane, a spherical reference wave is used to provide control over the target plane mesh spacing so that the field 
resolution can be controlled.  

1.3. Numerical Modeling of the Optical Propagation 
When doing numerical modeling of these continuous functions in a computer, the continuous functions are sampled 
onto a discrete mesh with a discrete number of mesh points and finite spacing between these points.  Until recently, the 
existing literature on this topic is extremely vague on how to pick these mesh parameters.  One of the best discussions 
of this topic is covered by Siegman.2  He indicates that there is a need for the number of samples to be between 2 and 8 
times the Fresnel number, Nf, which is defined as 
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where r is the radius of the aperture, λ is the wavelength, and z is the propagation distance.  He also indicates that a 
guard-band of 2.4 to 3.0 times the aperture diameter is required to avoid beam spill-over.   
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Although these guidelines are a good start, there are times when they were not sufficient for addressing the problems 
that presented themselves.  For example, if the Fresnel number of the propagation was 1/8, these guidelines indicated 
that only one point over the aperture was required to do the modeling.  Another example is modeling a rapidly diverging 
or converging beam where the guard-band was insufficient.  Even in the case of modeling propagation of a simple plane 
wave, a guard-band of 2.4 times the aperture diameter was excessive and resulted in unnecessary excessive 
computational time.  The work here analyzes the mesh requirements based on the angular bandwidth required to 
represent the propagation relative to the Nyquist criteria and the periodic nature of the Fourier transform.  In all the 
analysis done here, it is assumed that the field can be adequately represented on the predicted mesh or it can be filtered 
prior to the Fourier propagation to be so.   

1.4. Choosing Mesh Parameters for a Single Propagation with Full-Aperture Illumination Theory 
In prior work, we provided a technique for choosing mesh parameters that ensured that the mesh contained (1) enough 
angular bandwidth in phase space such that all the points in the input mesh could illuminate all the points in the output 
mesh (hence the full-aperture illumination theory name) and (2) enough guard-band so that Fourier wrap-around did not 
corrupt the region of interest in the target plane.3  We will review this analysis here for a case simplified by the 
limitation of 1D and the fact that the input and output regions of interest are the same diameter, D.  Figure 1 shows a 
description of the effective problem geometry considered in light of periodic Fourier modeling.  The first requirement of 
simple Fourier modeling is to model sufficient angular bandwidth so that light traveling from one side of the input 
region of interest can illuminate the opposite side of the output region of interest.  The complex number representation 
of an electric field wraps the phase such that it is only between –π and π, thus creating an effective oscillation in the 
phase.  Nyquist sampling requires that at least two samples of the phase are taken for each 2π phase oscillation.  A 2π 
radian phase step is equivalent to a one wavelength, λ, step height.  Thus, the Nyquist requirement can be represented 
mathematically as 
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where δ is the spacing between samples.   
 
The next requirement comes from the fact that the 
discrete Fourier transform assumes a periodic input.  To 
illustrate this, Figure 1 shows effective apertures adjacent 
to the input aperture and shows the effect of light 
diverging from their edges impinging on the adjacent 
mesh.  If the region of interest in the output plane is 
limited to a diameter D, accuracy in the area outside this 
diameter can be sacrificed by allowing the effective 
adjacent apertures to illuminate this area in order to 
reduce the number of required mesh points to speed up 
the modeling.  Thus, the mesh diameter, Dmesh, can be 
represented by  
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The required number of mesh points is then the ratio of 
the mesh diameter to the mesh spacing, or 
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where Nf is the Fresnel number.   
 
This analysis was extended for non-equal sized input and output regions of interest so that spherical wave propagation 
could be addressed.3  The resulting inequalities are given by 
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Figure 1 - Variable definition for choosing mesh 
parameters for a simple propagation 
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where δ1 is the mesh spacing in the input plane, D2 is the diameter of the region of interest in the output plane, δ2 is the 
mesh spacing in the output plane, and D1 is the diameter of the region of interest in the input plane.  
 
For a given propagation, the mesh parameters that minimize the number of mesh points, and hence the computational 
difficulty of the problem, are given by 
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These mesh parameters have direct optical significance.  Each of the mesh spacings are equivalent to the half the 
diffraction limited spot radius of a square aperture viewed from the opposite aperture.  In the case of equal sized starting 
and ending regions of interest (D1 = D2), the number of mesh points should be larger than 16 times the Fresnel number.  
For unequal aperture sizes, the number of mesh points is equal to 16 times the collimation Fresnel number, which is 
defined by Siegman as4 
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where M is the effective magnification, which is defined as D2/D1. 

1.5. Modeling Added Angular Bandwidth from Kolmogorov Turbulence  
In prior work, Coy outlined a procedure for adding the angular bandwidth from Kolmogorov turbulence.3  Turbulence 
can be reduced to an effective turbule size in the input aperture, r0.  The angular spreading induced by the turbulence 
can be approximated by  

0r
turb
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where γ is a turbulence scaling factor.  Coy adjusts the effective diameter of the region of interest by adding the angular 
content induced by the turbulence as 
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The full-aperture illumination inequalities were then used to find the mesh parameters based on the new diameter of the 
region of interest.  Coy also presents guidelines for choosing γ based on the amount of energy the model wants to 
represent based on a Kolmogorov phase screen.  The result of this analysis was that more than 90% of the energy could 
be represented for a value of γ of 3. 
 
The added angular bandwidth of a turbulence phase screen is directly analogous to the diffraction angle of a grating, 
which is represented mathematically as, 

( )
Λ

=
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where N is the diffractive order and Λ is the grating period.  In the small angle approximation, sin(θ) ≈ θ.  Since this 
theory provides a mechanism of taking phase screens into account, we will refer to this modification to the full-aperture 
illumination theory as the phase diffraction theory.   

2. THE DIFFRACTION THEORY OF MESH PARAMETER DETERMINATION 
An alternative method of determining the angular content of a beam is to use the diffraction angle from the edges of the 
aperture.  For a given hard-edge aperture, diffraction predicts spreading of the light by an angle proportional to the ratio 
of wavelength to the aperture diameter (λ/D).  If we use a proportionality factor of η, we can derive a reduced set of 
mesh parameters for a case of equal sized input and output regions of interest as 
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These inequalities predict a set of mesh 
parameters based on edge diffraction, so 
we will label this technique the edge-
diffraction theory.  When η is equal to the 
4 times the Fresnel number (D2/λz), these 
edge-diffraction mesh parameters are equal 
to the full-aperture illumination parameters 
derived above.  Practical values for η can 
be estimated by analyzing the energy 
capture with respect to angle for common 
diffraction patterns.  The normalized 
diffraction patterns from a Gaussian, a circular aperture (Airy pattern), and from a square aperture (sinc pattern) were 
integrated after applying a 10-10 threshold.  Figure 2 shows the results of this analysis.  A good value for η for most 
applications is 5 because for all the common diffraction patterns the majority of the energy is being represented.   
 
There are two cases in which the full-aperture illumination theory of determining mesh parameters can provide 
difficulties: large Fresnel number propagation and small Fresnel number propagation. 

2.1. Large Fresnel Number Propagation Modeling 
The above inequalities ensure that the mesh is properly represented for a single propagation, but these requirements can 
be conservative for large Fresnel number propagation (short distances and/or large apertures).  Often, for large Fresnel 
number propagations, the inequalities given above require a mesh that is outside practical limitations like computer 
memory.  The edge-diffraction theory above can be used to predict a reduced set of mesh points that are adequate, 
especially if the large Fresnel number propagation is followed by a lower Fresnel number propagation, as is the case for 
modeling the internal and external propagations of a directed energy system.   
 
Changing the z term in the inequality for N from the short distance to a total system distance allows us to obtain 
accurate answers in later planes.  As an example, we analyzed a system with a 1.0-m diameter aperture propagating a 
distance of 1 km with a wavelength of 1.0 µm before propagating a distance of 250 km.  This is equivalent to the initial 
short propagation of a 10-cm diameter beam being propagated 10 m before being expanded in a 10x telescope to be 
propagated to a far-off target.  Using the inequalities that take into account the full angular extent, the required mesh (on 
a power of 2 number of mesh points) has 4096 points with a spacing of 500 µm.  Using the reduced angular bandwidth 
with η=15 required only 1024 mesh points (again on a power of 2) with a 33 mm mesh spacing.  Results of the field 
amplitudes at the intermediate and final planes are shown in Figure 3.   
 
The field pattern at the intermediate plane for the reduced mesh is clearly not sufficiently resolved to see the Fresnel 
ringing, but clearly produces a much superior result at the final plane.  In this intermediate plane, we are only modeling 
a portion of the light, but in the final plane the portion of light that is modeled fills the entire region of interest.  The full 
resolution result looks good at the intermediate plane, but has suffered from a great deal of wrap-around at the final 
plane.   
 
This technique of using reduced angular content based on diffraction is a good way of reducing a complex problem that 
might not otherwise be able to be modeled with wave-optics due to the large number of required mesh points and 
producing an answer that is not fully accurate, but often has acceptable accuracy for real-world problems.   
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Figure 2 - Normalized energy capture for varying values of the 
diffraction scale factor 
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2.2. Small Fresnel Number Propagation Modeling 
Another case that is difficult to model using the minimum mesh parameters predicted by the full-aperture illumination 
theory is the case of long propagations or small Fresnel numbers.  As an example, consider propagation of 1.0 µm light 
from a 20 mm aperture over a distance of 100 m.  We modified the theory so that the mesh spacing (dxy) was smaller 
than the inequality required in each case, but was set to an exact odd integer multiple of the aperture diameter.  Thus, 
the full-aperture illumination theory predicts a minimum mesh of 32 points and a spacing of 2.2 mm, which allows 
exactly 9 samples across the diameter of the region of interest.  The edge-diffraction theory with η=10 predicted a mesh 
with 128 points and a mesh spacing of 0.952 mm, which corresponds to 21 samples of the field across the diameter of 
the region of interest.  Figure 4 shows the results of this Fourier modeling with the results of the numerical integration 
of the analytical form of the Fresnel integral for a slit on a 512 sample grid with a spacing of 0.156 mm.  The Fresnel 
integral solution for a slit can be represented as2 
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where u is the field, y is a the normalized 
lateral dimension coordinate (y=x/a), a is 
radius of the slit, and Nf is the Fresnel number.  
This integral was integrated simply by 
summing 104 discrete evaluations of the 
function over the -1 to +1 range.  
 
The theoretical answer was compared to the 
results obtained for varying values of η in two 
ways.  The first error term was calculated by 
taking the difference in on-axis intensity 
between the Fourier modeling result and the 
theoretical result and was normalized by the 
theoretical on-axis intensity value.  The next 
error was calculated by taking the rms 
difference between the theoretical field 
interpolated on to the same grid as the Fourier result and the Fourier result evaluated over the output region of interest.  
The output region of interest in this case had the same diameter as the input region of interest, which equaled 20 mm.  
Then this error was normalized by dividing by the peak intensity of the theoretical result to create a coefficient of 
variance.  Figure 5 shows these two error terms with respect to varying values of the diffraction scaling factor, η.  The 
point with the lowest diffraction scaling factor is the result predicted by the full-aperture illumination theory.  The next 

   
Figure 3 - Results at the intermediate and final planes of the full mesh and the reduced mesh. 
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Figure 4 - Results of the 1D propagation modeling of a slit 
with a Fresnel number of 1.0 compared to the Fresnel 
integral theory. 
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point is the result for the η=10 case, which showed an on-axis intensity error of 5.9% and a intensity coefficient of 
variance of 0.4%.   
 
In conclusion, the diffraction theory of choosing mesh parameters offers the modeler an alternative to the full-aperture 
illumination theory that is especially useful in the case of very short or very long propagations.  In the next section we 
present a theory that unites the three theories presented above. 

3. COMBINING THE MESH PARAMETER DETERMINATION THEORIES 
We have presented three variations of the theory on how to determine mesh parameters in this paper: the full-aperture 
illumination theory, the phase diffraction theory, and the edge diffraction theory.  The most conservative technique of 
combining all of these different theories is to add their components of angular bandwidth such that the total modeled 
angular bandwidth for an equal aperture system with equal effective r0 values on each end is given by 

0rDD
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For a system with unequal apertures, the total angular bandwidth is  
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From this angular bandwidth, we can determine the required mesh spacing based on Nyquist sampling to be 
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Then the number of mesh points required to avoid the periodic wrap-around effects of Fourier modeling is 

δ
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These two inequalities provide a conservative but fairly complete theory taking into account phase-induced diffraction, 
edge-induced diffraction, and the full-aperture illumination requirements of Fourier modeling.  The degree to which the 
phase and edge diffraction is represented is adjustable by the user via the η and γ coefficients.   

4. COMPLEX SYSTEM MODELING 
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Figure 5 - Two forms of intensity error with respect to the diffraction scaling factor comparing Fourier 

modeling to the theoretical value based on a high-resolution evaluation of the Fresnel integral result for a 
slit with a Fresnel number equal to 1.0 
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In the work above, the analysis was limited to a single propagation between two regions of interest, but modeling a 
complex system typically requires multiple propagations.  The analysis above showed that the required mesh parameters 
can be determined given a wavelength and two regions of interest separated by a distance.  Therefore, we present here a 
procedure for reducing a complex system to two limiting apertures and a single distance for determining the mesh 
parameter requirements based on field and aperture stop analysis. 

4.1. Field and Aperture Stop Determination 
In every optical system there is both an aperture stop, which limits the cone of energy from a point on the optical axis, 
and a field stop, which limits the angular extent of the light going through the system.5  Born and Wolf outline a 
procedure to find the aperture stop and field stop of a complex optical system comprised of simple optical elements as 
follows:6 

1. Find the location and size of the image of each of the apertures in the input space.  This can be done using the 
imaging equation7, 1/f = 1/d1 + 1/d2, or through any comparable means.   

2. Find the angle formed by the edges of each of the apertures and a point in the middle of the object being 
imaged. 

3. The aperture which creates the smallest angle is the image of the aperture stop, or the entrance pupil.   
4. Find the angle formed by a point in the center of the entrance pupil and the image of each of the other 

apertures.   
5. The aperture which creates the smallest angle is the image of the field stop.   

 
The field stop and aperture stop are the apertures in an optical system that most limit the cone angle of light entering the 
system and the field of view of the system.  For a given optical system, the image of these two apertures in the input 
space and the separation of their images is all the information needed to determine the mesh for modeling a complex 
optical system comprised of simple optical elements.  We modified this procedure slightly to address the wave-optics 
modeling problem by replacing the object with the light source and its aperture.  We also found that using ABCD ray 
matrices8 was a convenient way of determining the image planes of the various apertures in the system.  To determine 
the size and location of the image of a given aperture, the ABCD matrix representing the propagation from the source to 
the aperture was inverted and the resulting inverted ABCD matrix revealed the effective magnification, Mimage, and 
image plane location, zimage, by 
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4.2. Imaging System Example 
Figure 6 (a) shows a complex imaging system comprised of ideal simple optical elements.  Figure 6 (b) shows the 
simplified system in which the apertures have been imaged back into the input plane.  The lens L1 forms the aperture 
stop and the input aperture, A1, forms the field stop.  The images of the two apertures in the input space are 15 mm and 
1 mm in diameter respectively.  They are separated by a distance of 15 mm.  For a wavelength of 1.0 µm, the resulting 
mesh parameters for the system with γ=0 and η=0 are 512 x 9.4µm.   
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Figure 7 shows the field magnitude results of modeling a uniform plane wave entering the system using these mesh 
parameters with a spherical reference wave modified directly by the lenses.  Plane 1 is the input plane after the 1-mm 
input aperture.  Plane 2 is the plane of the first lens, L1.  Plane 3 is the plane of the second lens, L2.  Plane 4 is the 
image plane.  It is clear from this result that the image is very good because it lies exactly on top of the input.     

 
To show the effects of diffraction, the system was modeled again with the input aperture reduced in size to 0.1 mm in 
diameter.  With the diffraction scale factor, η=0, the mesh parameters were 4096 x 9.9 µm.  The results of the 
propagation to the same planes as the example above are shown in Figure 8.  One key learning from modeling this 
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Figure 6 - An imaging system (a) and its resulting input-plane aperture representation (b) 

 
Figure 7 - Results from sequential spherical reference wave wave-optics modeling of the imaging system 
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system is that the 15 mm aperture lenses clip some of the diffraction from the small input aperture.  This is partially 
shown in the image plane (Plane 4) as a slight ripple, but it is under-resolved.   

 
To get better resolution on the ripple on the far-field pattern, the diffraction scale factor, η, was increased to 5.  The 
resulting mesh parameters for this model were then 8196 x 5.0 µm.  Figure 9 shows the results of this modeling.  The 
diffraction ripple in the image plane (Plane 4) is much more clearly resolved indicating a more accurate model of the 
system.  The disadvantage of this more-accurate model was the increase in computational difficulty.   
 

5. CONCLUSIONS 
We present here a series of common problems when modeling complex systems with wave-optics, including large and 
small Fresnel number propagation, systems with a series of apertures, and systems with turbulent phase screens.  The 
results allow a user sufficient flexibility when modeling a complex optical system so as to be able to represent the 
propagation correctly in every wave-optics model.   
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Figure 8 - Sequential wave-optics modeling results using a 100-micron input aperture 

  
Figure 9 - Wave-optics results of modeling the imaging system with a 0.1-mm input aperture and a diffraction 

scale factor of 5.0 
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