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Introduction to WaveTrain
• WaveTrain 

– Wave-Optics Modeling Tool 
Based on tempus

– FREE for government work
• WaveTrain is becoming the 

industry standard for wave-
optics modeling

• An investment in WaveTrain 
or tempus is not lost because 
for government use they are:
– open-source & non-

proprietary
• tempus can work with 

existing modeling software.
– no duplication of effort or 

need to learn too much new 
software
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Huygens Principle

In 1678 Christian Huygens 
“expressed an intuitive 
conviction that if each point on 
the wavefront of a light 
disturbance were considered to 
be a new source of a secondary 
spherical disturbance, then the 
wavefront at any later instant 
could be found by construction 
the envelope of the secondary 
wavelets.”

-J. Goodman, Introduction to 
Fourier Optics (McGraw Hill, 
1968), p. 31.
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Simple Fourier Propagator 
& Notation Simplification
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Quadratic Phase Factor (QPF):  Equivalent to the 
effect a lens has on the wavefront of a field.

Fourier Transform

Multiplicative Phase Factor:  Takes into account the 
overall phase shift due to propagation
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Convolution Propagator – Two FTs
• Steps:

– Fourier transform
– multiplication by the 

Fourier transformed 
kernel

– an inverse Fourier 
transform

• Advantage:
– Allows control of the 

mesh spacing
• Remaining 

Question for FFT 
Implementation:
– What mesh size and 

spacing should be 
used?
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Prior Work: Rules of Thumb
• Siegman gives guidance for single 

propagations as follows :
– Number of samples “between 2N and 8N”

where N is the Fresnel number and 
– Guard band of “≈1.2 to ≈ 1.5 times the half-

width of the aperture itself.” (Lasers, 18.3)
• Another General Procedure:

– Double the mesh size and reduce the spacing 
by √2 and see if the answer matches the 
lower resolution one.
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Picking Mesh Parameters for 
Simple Systems
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Adequate Phase Sampling
• In most situations, 

the most rapidly 
varying part of the 
field is the QPF.

• In a complex field, 
the phase is reset 
every wavelength or 
2π radians.

• To achieve proper 
sampling, sampling 
theory dictates that 
we need two 
samples per wave.
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Mesh Sampling: Angular Bandwidth
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Virtual Adjacent Apertures – “Wrap Around”

• Now that we know the mesh 
sampling intervals (δ1 and δ2), we 
need to know how big a mesh we 
need to use to accurately model the 
diffraction.

• The Fourier transform assumes a 
repeating function at the input.
– This means that there are effective 

virtual apertures on all sides of the 
input aperture. 

• We need a mesh large enough that 
these virtual adjacent apertures do 
not illuminate our area of interest. 
– This allows us to avoid “wrap-

around” by using a guard band.
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Mesh Size: Avoid “Wrap-Around”
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Mesh Determination Rules of Thumb
Mesh Sample Spacing Mesh Size
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S. Coy, "Choosing Mesh Spacings and Mesh Dimensions for Wave Optics Simulation" SPIE (2005). 

Approximation: Mesh spacing 
should be bigger than half the 
diffraction limited radius from 

the other end.

Approximation: Mesh size 
should be bigger than 16 times 
the effective Fresnel number.
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Determining Fourier Propagation 
Mesh Parameters for Complex 

Optical Systems of Simple Optics
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Introduction
• Wave-optic mesh parameters can be uniquely 

determined by a pair of limiting apertures 
separated by a finite distance and a wavelength.

• An optical system comprised of a set of ideal 
optics can be analyzed to determine the two 
limiting apertures that most restrict rays 
propagating through the system using field and 
aperture stop techniques. 
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Definitions of Field & Aperture Stop
• Aperture Stop = the aperture in a system 

that limits the cone of energy from a point 
on the optical axis.

• Field Stop = the aperture that limits the 
angular extent of the light going through 
the system.
– NOTE: All this analysis takes place with ray 

optics.
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Example System
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Procedure for Finding Stops 1/3
Find the location and size of each 

aperture in input space.
1. Find the ABCD matrix from 

the input of the system to 
each optic in the system.

2. Solve for the distance (zimage) 
required to drive the B term 
to zero by inverting the 
input-space to aperture ray 
matrix.

• This matrix is the mapping 
from the aperture back to 
input space.

3. The A term is the 
magnification (Mimage)of the 
image of that aperture.
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Procedure for Finding Stops 2/3
2. Find the angle formed by the edges of each of 

the apertures and a point in the middle of the 
object/input plane.  The aperture which creates 
the smallest angle is the image of the aperture 
stop or the entrance pupil.
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Procedure for Finding Stops 3/3
2. Find the aperture which most limits the 

angle from a point in the center of the 
image of the aperture stop in input 
space.  This aperture is the field stop.
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Example: Fourier Propagation
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D1 = 1 mm, D2 = 15 mm, λ = 1 μm, z = 0.15 m

Minimal Mesh = 400 x 9.375 μm = 3.75 mm
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Example System Modeled
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N=1024, δ=6.6 μm

Plane 2 Plane 3 Plane 4Input

Over-Sampled
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N=512, δ=9.4 μm

Plane 2 Plane 3 Plane 4Input

Minimal
Sampling
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N=256, δ=13.3 μm

Plane 2 Plane 3 Plane 4Input

Under
Sampled
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Conclusions

• We have devised a procedure to reduce a 
complex system comprised of simple optics into 
a pair of the most restricting apertures using the 
concepts of field stop and aperture stop.

• With these two apertures, a wavelength, and a 
distance, we can determine the mesh 
parameters for this system.

• Limitation: Does not include possibility of soft-
edged apertures or aberrations, but they can be 
added.
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Questions?

jmansell@mza.com
(505) 245-9970 x122


