#   

Steve Coy<br>Justin Mansell<br>MZA Associates Corporation<br>coy@mza.com<br>(505) 245-9970 ext. 115

- We will present a simple step-by-step method for choosing mesh spacings and dimensions for any wave optics simulation problem. To the best of our knowledge this has never been done before.
- This method addresses both modeling correctness and computational efficiency, while leaving the user enough flexibility to deal with additional constraints.
- The method is amenable to automated implementation and well-suited for use with automated optimization techniques.
- This work has been funded in part by the Air Force Research Laboratory and the Airborne Laser Program.


## + *)

## Fourier optics



## One-step DFT propagation



Two-step DFT propagation

## 4

The Fresnel Diffraction Integral:

$$
\begin{aligned}
u_{2}\left(\vec{\rho}_{2}\right) & \cong \frac{e^{i k \Delta z}}{i \lambda \Delta z} \iint d^{2} \vec{\rho}_{1} u_{1}\left(\vec{\rho}_{1}\right) \exp \left(\frac{i k}{2 \Delta z}\left|\vec{\rho}_{2}-\vec{\rho}_{1}\right|^{2}\right) \\
& =\exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{2}^{2}\right) \cdot F_{\Delta z}\left\{\exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{1}^{2}\right) \cdot u_{1}\left(\vec{\rho}_{1}\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& F_{\Delta z}\{u(\vec{\rho})\}=\frac{e^{i k \Delta z}}{i \lambda \Delta z} U\left(\lambda \Delta z \vec{\rho}_{f}\right) \quad \text { (scaled Fourier transform) } \\
& U\left(\vec{\rho}_{f}\right)=F\{u(\vec{\rho})\}
\end{aligned}
$$

## Strictly valid only for propagation through vacuum or ideal dielectric media

## 4

The Fresnel Diffraction Integral:
where

$$
u_{2}\left(\vec{\rho}_{2}\right) \cong \frac{e^{i k \Delta z}}{i \lambda \Delta z} \iint d^{2} \vec{\rho}_{1} u_{1}\left(\vec{\rho}_{1}\right) \exp \left(\frac{i k}{2 \Delta z}\left|\vec{\rho}_{2}-\vec{\rho}_{1}\right|^{2}\right)
$$

$$
=\exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{2}^{2}\right) \cdot F_{\Delta z}\left\{\exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{1}^{2}\right) \cdot u_{1}\left(\vec{\rho}_{1}\right)\right\}
$$

$$
F_{\Delta z}\{u(\vec{\rho})\}=\frac{e^{i k \Delta}}{i \lambda \Delta z}\left(\lambda \Delta z \vec{\rho}_{f}\right) \quad \text { (scand Fourientransform) }
$$

$$
U\left(\vec{\rho}_{f}\right)=F\{u(\vec{\rho})\} \quad \begin{array}{l|l|}
\hline \begin{array}{l}
\text { quadratic } \\
\text { phase } \\
\text { factor }
\end{array} & \begin{array}{l}
\text { scaled } \\
\text { Fourier } \\
\text { transform }
\end{array} \\
\hline
\end{array} \begin{aligned}
& \text { quadratic } \\
& \text { phase } \\
& \text { factor }
\end{aligned}
$$

## 

$$
\begin{gathered}
u_{2}\left(\vec{\rho}_{2}\right) \cong \exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{2}^{2}\right) \cdot F_{\Delta z}\left\{\exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{1}^{2}\right) \cdot u_{1}\left(\vec{\rho}_{1}\right)\right\} \\
u_{2 D}\left(\vec{\rho}_{2}\right) \cong \exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{2}^{2}\right) \cdot F_{\Delta z D}\left\{\exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{1}^{2}\right) \cdot u_{1 D}\left(\vec{\rho}_{1}\right)\right\}
\end{gathered}
$$

where $F_{\Delta z D}$ represents the Discrete Fourier Transform scaled by $\lambda \Delta z$, and $u_{1 D}$ and $u_{2 D}$ are $N$ by $N$ rectangular meshes with spacings $\delta_{1}$ and $\delta_{2}$.

$$
\delta_{2}=\frac{\lambda \Delta z}{N \delta_{1}}
$$



## 



## 

## 

Example1:

$$
\begin{aligned}
\lambda & =1.0 \mu \mathrm{~m}, \Delta z=60 \mathrm{~km} \\
D_{1} & =1.0 \mathrm{~m}, D_{2}=1.5 \mathrm{~m}
\end{aligned}
$$

Constraints :

$$
\delta_{1} \leq 4.0 \mathrm{~cm}, \quad \delta_{2} \leq 6.0 \mathrm{~cm}, \quad N \geq 25
$$



$$
\delta_{1} \leq \frac{\lambda \Delta z}{D_{2}}, \quad \delta_{2} \leq \frac{\lambda \Delta z}{D_{1}}, \quad N=\frac{\lambda \Delta z}{\delta_{1} \delta_{2}} \geq \frac{D_{1} D_{2}}{\lambda \Delta z}
$$

## 2

Example 2:
Same, except $D_{2}=10.0 \mathrm{~m}$
Constraints:

$$
\delta_{1} \leq 6.0 \mathrm{~mm}, \delta_{2} \leq 6.0 \mathrm{~cm}, N \geq 167
$$



$$
\delta_{1} \leq \frac{\lambda \Delta z}{D_{2}}, \quad \delta_{2} \leq \frac{\lambda \Delta z}{D_{1}}, \quad N=\frac{\lambda \Delta z}{\delta_{1} \delta_{2}} \geq \frac{D_{1} D_{2}}{\lambda \Delta z}
$$

## * 口 4 本

$$
u_{2 D}\left(\vec{\rho}_{2}\right) \cong \exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{2}^{2}\right) \cdot F_{\Delta z D}\left\{\exp \left(i \frac{\pi}{\lambda \Delta z} \rho_{1}^{2}\right) \cdot u_{1 D}\left(\vec{\rho}_{1}\right)\right\}
$$



$$
\begin{aligned}
& u_{i t m D}\left(\vec{\rho}_{2}\right) \cong \exp \left(i \frac{\pi}{\lambda \Delta z_{1}} \rho_{2}^{2}\right) \cdot F_{\Delta z 1 D}\left\{\exp \left(i \frac{\pi}{\lambda \Delta z_{1}} \rho_{1}^{2}\right) \cdot u_{1 D}\left(\vec{\rho}_{1}\right)\right\} \\
& u_{2 D}\left(\vec{\rho}_{2}\right) \cong \exp \left(i \frac{\pi}{\lambda \Delta z_{2}} \rho_{2}^{2}\right) \cdot F_{\Delta z_{2 D} D}\left\{\exp \left(i \frac{\pi}{\lambda \Delta z_{2}} \rho_{1}^{2}\right) \cdot u_{i t m D}\left(\vec{\rho}_{1}\right)\right\}
\end{aligned}
$$

where $u_{i t m D}$ represents the optical field at some intermediate plane, $z_{i t m}, \Delta z_{1}=z_{i t m}-z_{1}$, and $\Delta z_{2}=z_{2}-z_{i t m}$.

$$
\delta_{2}=\frac{\lambda \Delta z_{2}}{N \delta_{i t m}}=\frac{\lambda \Delta z_{2}}{N \frac{\lambda \Delta z_{1}}{N \delta_{1}}}=\frac{\Delta z_{2}}{\Delta z_{1}} \delta_{1}=\frac{\left|z_{2}-z_{i t m}\right|}{\left|z_{1}-z_{i t m}\right|} \delta_{1}
$$

Some authors make a distinction between two different algorithms for two-step DFT propagation:
(1) Two concatenated one-step DFT propagations, as we have just described.
(2) Frequency domain propagation, i.e.

## Perform a DFT <br> Multiply by a kernel <br> Perform an inverse DFT

However it turns out that (2) can be regarded as a special case of (1) where the two propagation steps are in opposite directions.

For propagations between the same pair of limiting apertures twostep propagation is much less efficient than one-step propagation.

So why use two-step propagation?
Answer:
(a) The mesh spacings at the initial and final planes can be chosen independently.
(b) It works well for propagations between any two planes along the optical path. (For one-step propagation $N$ blows up for small $\Delta z$.)




## 






## 

To minimize $N$ :


$$
\begin{aligned}
& \delta_{1}=\frac{\lambda \Delta z}{2 D_{2}}, \quad \delta_{2}=\frac{\lambda \Delta z}{2 D_{1}} \\
& N \geq \frac{4 D_{1} D_{2}}{\lambda \Delta z}
\end{aligned}
$$

To make $\delta_{1}=\delta_{2}=\delta$ :

$$
\begin{aligned}
& \delta_{1}=\delta_{2}=\delta \leq \frac{\lambda \Delta z}{D_{1}+D_{2}} \\
& N \geq \frac{D_{1}+D_{2}}{\delta}
\end{aligned}
$$

$$
\delta_{1} D_{2}+\delta_{2} D_{1} \leq \lambda \Delta z, \quad N \geq \frac{D_{1}}{\delta_{1}}+\frac{D_{2}}{\delta_{2}}
$$

##  - $\operatorname{Han}_{5}$

## Example1:

$\lambda=1.0 \mu \mathrm{~m}, \Delta z=60 \mathrm{~km}$
$D_{1}=1.0 \mathrm{~m}, \quad D_{2}=1.5 \mathrm{~m}$
Minimizing $N$ :
$\delta_{1}=2.0 \mathrm{~cm}, \delta_{2}=3.0 \mathrm{~cm}, \quad N=100$
Making $\delta_{1}=\delta_{2}$ :
$\delta_{1}=2.4 \mathrm{~cm}, \delta_{2}=2.4 \mathrm{~cm}, \quad N \geq 105$


$$
\delta_{1} D_{2}+\delta_{2} D_{1} \leq \lambda \Delta z, \quad N \geq \frac{D_{1}}{\delta_{1}}+\frac{D_{2}}{\delta_{2}}
$$

## 



Example 2:
Same, except $D_{2}=10.0 \mathrm{~m}$
Minimizing $N$ :
$\delta_{1}=3.0 \mathrm{~mm}, \delta_{2}=3.0 \mathrm{~cm}, N=667$
Making $\delta_{1}=\delta_{2}$ :
$\delta_{1}=5.5 \mathrm{~mm}, \delta_{2}=5.5 \mathrm{~mm}, N \geq 2017$

$$
\delta_{1} D_{2}+\delta_{2} D_{1} \leq \lambda \Delta z, \quad N \geq \frac{D_{1}}{\delta_{1}}+\frac{D_{2}}{\delta_{2}}
$$




 P



b

$0 \quad 6$



## $6 \% \cdot \square_{0}$


$+$

-

## 



## 



## 



#  Honasion- 

$\mathrm{Z}_{\text {itm }}$ outer

$$
\delta(Z)=\frac{\left|Z-Z_{\text {itm }_{\text {outer }}}\right|}{\left|Z_{1}-Z_{\text {itmouter }}\right|} \delta_{1}=\frac{\left|Z-Z_{\text {itmouter } \mid}\right|}{\left|Z_{2}-Z_{\text {itmouter }}\right|} \delta_{2}
$$




## * प4


*D
为
 propagations between any two planes, using two different intermediate planes, one for $z \in\left[z_{1}, z_{2}\right]$, one for $z \notin\left[z_{1}, z_{2}\right]$.
$\delta_{1}, \delta_{2}$, and $N$ must be chosen to satisfy the following:

$$
\delta_{1} D_{2}+\delta_{2} D_{1} \leq \lambda \Delta z, \quad N \geq \frac{D_{1}}{\delta_{1}}+\frac{D_{2}}{\delta_{2}}
$$

This result is strictly valid only for propagation through vacuum or ideal dielectric media.

> We now have a method for choosing mesh spacings and dimensions for the special case of propagation through vacuum or ideal dielectric media, given two limiting apertures.

> Next, we will present a simple step-by-step procedure to reduce any wave optics simulation problem, including propagation through optical systems and aberrating media, to one or more instances of the special case.


To first order, ordinary lenses and mirrors operate only on the overall tilt and/or curvature of wavefronts passing through the optical system.

For our purposes these effects can be removed picking some one plane to start from, e.g. the source plane, and then replacing all apertures and aberrating effects with their images, as seen through the intervening lenses and mirrors.

## 

A collimated source can be thought of as having a second limiting aperture at or near the beam waist．



Blurring effects due to diffraction or propagation through aberrating media have the effect of enlarging the apparent size of the source aperture, as seen from the receiver, and vice versa.


Blurring effects vary with position, changing the sizes of the blurred apertures. For example, at the source the set of rays to be modeled is limited by the unblurred source aperture and the blurred receiver aperture, while at the receiver it is limited by the unblurred receiver aperture and the blurred source aperture.


These two apertures can be the same as two of the limiting apertures identified earlier, but they need not be; instead they could be placed at different planes, chosen for convenience.

They should be chosen such that they both capture all light of interest and, to keep $N$ reasonable, little light not of interest.

## 

 *$$
\delta_{1} D_{2}+\delta_{2} D_{1} \leq \lambda \Delta z \quad \text { (from Nyquist) }
$$

$$
N \geq \frac{D_{1}}{\delta_{1}}+\frac{D_{2}}{\delta_{2}}
$$

(to avoid wrap - around) * $\delta_{1}=\frac{\lambda \Delta z}{2 D_{2}}, \quad \delta_{2}=\frac{\lambda \Delta z}{2 D_{1}}, \quad N \geq \frac{4 D_{1} D_{2}}{\lambda \Delta z}$ *

$$
\delta_{1}=\delta_{2}=\delta \leq \frac{\lambda \Delta z}{D_{1}+D_{2}}, \quad N \geq \frac{D_{1}+D_{2}}{\delta}
$$



The inner intermediate plane lies inside the two aperture planes and is used for propagations outside those planes.

The outer intermediate plane lies outside the two aperture planes and is used for propagations inside those planes


- We have presented a simple step-by-step method for choosing mesh spacings and dimensions for wave optics simulation.
- This method addresses both modeling correctness and computational efficiency, while leaving the user enough flexibility to deal with additional constraints.
- The method is amenable to automated implementation and well-suited for use with automated optimization techniques.
- Caveat: there are other important issues that must be taken into account in order to obtain correct results using wave optics simulation.
- For more information:
- read the paper in the Proceedings
- download our short course on Modeling and Simulation of Beam Control Systems, http://www.mza.com/doc/MZADEPSBCSMSC2004
- or contact me, Steve Coy, coy@mza.com.

